Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Quadratic Gauss sum
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
In [[number theory]], '''quadratic Gauss sums''' are certain finite sums of roots of unity. A quadratic Gauss sum can be interpreted as a linear combination of the values of the complex [[exponential function]] with coefficients given by a quadratic character; for a general character, one obtains a more general [[Gauss sum]]. These objects are named after [[Carl Friedrich Gauss]], who studied them extensively and applied them to [[quadratic reciprocity|quadratic]], [[cubic reciprocity|cubic]], and [[biquadratic reciprocity|biquadratic]] reciprocity laws. == Definition == For an odd [[prime number]] {{mvar|p}} and an integer {{mvar|a}}, the '''quadratic Gauss sum''' {{math|''g''(''a''; ''p'')}} is defined as : <math> g(a;p) = \sum_{n=0}^{p-1}\zeta_p^{an^2},</math> where <math>\zeta_p</math> is a [[Primitive nth root of unity|primitive {{mvar|p}}th root of unity]], for example <math>\zeta_p=\exp(2\pi i/p)</math>. Equivalently, : <math>g(a;p) = \sum_{n=0}^{p-1}\big(1+\left(\tfrac{n}{p}\right)\big)\,\zeta_p^{an}.</math> For {{mvar|a}} divisible by {{mvar|p}}, and we have <math>\zeta_p^{an^2}=1</math> and thus : <math> g(a;p) = p.</math> For {{mvar|a}} not divisible by {{mvar|p}}, we have <math>\sum_{n=0}^{p-1} \zeta_p^{an} = 0</math>, implying that : <math>g(a;p) = \sum_{n=0}^{p-1}\left(\tfrac{n}{p}\right)\,\zeta_p^{an} = G(a,\left(\tfrac{\cdot}{p}\right)),</math> where : <math>G(a,\chi)=\sum_{n=0}^{p-1}\chi(n)\,\zeta_p^{an}</math> is the [[Gauss sum]] defined for any character {{mvar|''χ''}} modulo {{mvar|p}}. == Properties == * The value of the Gauss sum is an [[algebraic integer]] in the {{mvar|p}}th [[cyclotomic field]] <math>\mathbb{Q}(\zeta_p)</math>. * The evaluation of the Gauss sum for an integer {{mvar|a}} not divisible by a prime {{math|''p'' > 2}} can be reduced to the case {{math|''a'' {{=}} 1}}: :: <math> g(a;p)=\left(\tfrac{a}{p}\right)g(1;p). </math> * The exact value of the Gauss sum for {{math|''a'' {{=}} 1}} is given by the formula:<ref>M. Murty, S. Pathak, The Mathematics Student Vol. 86, Nos. 1-2, January-June (2017), xx-yy ISSN: 0025-5742 https://mast.queensu.ca/~murty/quadratic2.pdf</ref> :: <math> g(1;p) =\sum_{n=0}^{p-1}e^\frac{2\pi in^2}{p}= \begin{cases} (1+i)\sqrt{p} & \text{if}\ p\equiv 0 \pmod 4, \\ \sqrt{p} & \text{if}\ p\equiv 1\pmod 4, \\ 0 & \text{if}\ p \equiv 2 \pmod 4, \\ i\sqrt{p} & \text{if}\ p\equiv 3\pmod 4. \end{cases}</math> ; Remark In fact, the identity : <math>g(1;p)^2=\left(\tfrac{-1}{p}\right)p</math> was easy to prove and led to one of Gauss's [[proofs of quadratic reciprocity]]. However, the determination of the ''sign'' of the Gauss sum turned out to be considerably more difficult: Gauss could only establish it after several years' work. Later, [[Peter Gustav Lejeune Dirichlet|Dirichlet]], [[Leopold Kronecker|Kronecker]], [[Issai Schur|Schur]] and other mathematicians found different proofs. == Generalized quadratic Gauss sums == Let {{math|''a'', ''b'', ''c''}} be [[natural numbers]]. The '''generalized quadratic Gauss sum''' {{math|''G''(''a'', ''b'', ''c'')}} is defined by :<math>G(a,b,c)=\sum_{n=0}^{c-1} e^{2\pi i\frac{a n^2+bn}{c}}</math>. The classical quadratic Gauss sum is the sum {{math|''g''(''a'', ''p'') {{=}} ''G''(''a'', 0, ''p'')}}. ; Properties *The Gauss sum {{math|''G''(''a'',''b'',''c'')}} depends only on the [[residue class]] of {{math|''a''}} and {{math|''b''}} modulo {{math|''c''}}. *Gauss sums are [[multiplicative function|multiplicative]], i.e. given natural numbers {{math|''a'', ''b'', ''c'', ''d''}} with {{math|[[greatest common divisor|gcd]](''c'', ''d'') {{=}} 1}} one has ::<math>G(a,b,cd)=G(ac,b,d)G(ad,b,c).</math> :This is a direct consequence of the [[Chinese remainder theorem]]. *One has {{math|''G''(''a'', ''b'', ''c'') {{=}} 0}} if {{math|gcd(''a'', ''c'') > 1}} except if {{math|gcd(''a'',''c'')}} divides {{math|''b''}} in which case one has ::<math>G(a,b,c)= \gcd(a,c) \cdot G\left(\frac{a}{\gcd(a,c)},\frac{b}{\gcd(a,c)},\frac{c}{\gcd(a,c)}\right)</math>. :Thus in the evaluation of quadratic Gauss sums one may always assume {{math|gcd(''a'', ''c'') {{=}} 1}}. *Let {{math|''a'', ''b'', ''c''}} be integers with {{math|''ac'' ≠ 0}} and {{math|''ac'' + ''b''}} even. One has the following analogue of the [[quadratic reciprocity]] law for (even more general) Gauss sums<ref>Theorem 1.2.2 in B. C. Berndt, R. J. Evans, K. S. Williams, ''Gauss and Jacobi Sums'', John Wiley and Sons, (1998).</ref> ::<math>\sum_{n=0}^{|c|-1} e^{\pi i \frac{a n^2+bn}{c}} = \left|\frac{c}{a}\right|^\frac12 e^{\pi i \frac{|ac|-b^2}{4ac}} \sum_{n=0}^{|a|-1} e^{-\pi i \frac{c n^2+b n}{a}}</math>. *Define ::<math> \varepsilon_m = \begin{cases} 1 & \text{if}\ m\equiv 1\pmod 4 \\ i & \text{if}\ m\equiv 3\pmod 4 \end{cases}</math> :for every odd integer {{math|''m''}}. The values of Gauss sums with {{math|''b'' {{=}} 0}} and {{math|gcd(''a'', ''c'') {{=}} 1}} are explicitly given by ::<math>G(a,c) = G(a,0,c) = \begin{cases} 0 & \text{if}\ c\equiv 2\pmod 4 \\ \varepsilon_c \sqrt{c} \left(\dfrac{a}{c}\right) & \text{if}\ c\equiv 1\pmod 2 \\ (1+i) \varepsilon_a^{-1} \sqrt{c} \left(\dfrac{c}{a}\right) & \text{if}\ c\equiv 0\pmod 4. \end{cases}</math> :Here {{math|({{sfrac|''a''|''c''}})}} is the [[Jacobi symbol]]. This is the famous formula of [[Carl Friedrich Gauss]]. * For {{math|''b'' > 0}} the Gauss sums can easily be computed by [[completing the square]] in most cases. This fails however in some cases (for example, {{math|''c''}} even and {{math|''b''}} odd), which can be computed relatively easy by other means. For example, if {{math|''c''}} is odd and {{math|gcd(''a'', ''c'') {{=}} 1}} one has ::<math>G(a,b,c) = \varepsilon_c \sqrt{c} \cdot \left(\frac{a}{c}\right) e^{-2\pi i \frac{\psi(a) b^2}{c}},</math> :where {{math|''ψ''(''a'')}} is some number with {{math|4''ψ''(''a'')''a'' ≡ 1 (mod ''c'')}}. As another example, if 4 divides {{mvar|c}} and {{mvar|b}} is odd and as always {{math|gcd(''a'', ''c'') {{=}} 1}} then {{math|''G''(''a'', ''b'', ''c'') {{=}} 0}}. This can, for example, be proved as follows: because of the multiplicative property of Gauss sums we only have to show that {{math|''G''(''a'', ''b'', 2<sup>''m''</sup>) {{=}} 0}} if {{math|''n'' > 1}} and {{math|''a'', ''b''}} are odd with {{math|gcd(''a'', ''c'') {{=}} 1}}. If {{mvar|b}} is odd then {{math|''an''<sup>2</sup> + ''bn''}} is even for all {{math|0 ≤ ''n'' < ''c'' − 1}}. For every {{mvar|q}}, the equation {{math|''an''<sup>2</sup> + ''bn'' + ''q'' {{=}} 0}} has at most two solutions in {{math|'''<math>\mathbb{Z}</math>'''/2<sup>''n''</sup>'''<math>\mathbb{Z}</math>'''}}. Indeed, if <math>n_1</math> and <math>n_2</math> are two solutions of same parity, then <math>(n_1 - n_2)(a(n_1 + n_2) +b) = \alpha 2^m</math> for some integer <math>\alpha</math>, but <math>(a(j_1 + j_2) +b)</math> is odd, hence <math>j_1 \equiv j_2 \pmod{2^m}</math>. {{huh|date=July 2022}}<!-- Is this Z/(2^(mZ)) or Z/((2^m)Z) which would just be 1/2^n? Use LaTeX markup to disambiguate. --> Because of a counting argument {{math|''an''<sup>2</sup> + ''bn''}} runs through all even residue classes modulo {{mvar|c}} exactly two times. The [[geometric sum]] formula then shows that {{math|''G''(''a'', ''b'', 2<sup>''m''</sup>) {{=}} 0}}. *If {{mvar|c}} is an odd [[square-free integer]] and {{math|gcd(''a'', ''c'') {{=}} 1}}, then ::<math>G(a,0,c) = \sum_{n=0}^{c-1} \left(\frac{n}{c}\right) e^\frac{2\pi i a n}{c}.</math> :If {{mvar|c}} is not squarefree then the right side vanishes while the left side does not. Often the right sum is also called a quadratic Gauss sum. *Another useful formula ::<math>G\left(n,p^k\right) = p\cdot G\left(n,p^{k-2}\right)</math> :holds for {{math|''k'' ≥ 2}} and an odd prime number {{mvar|p}}, and for {{math|''k'' ≥ 4}} and {{math|''p'' {{=}} 2}}. ==See also== *[[Gauss sum]] *[[Gaussian period]] *[[Kummer sum]] *[[Landsberg–Schaar relation]] ==References== {{reflist}} *{{cite book | last1 = Ireland | last2 = Rosen | title = A Classical Introduction to Modern Number Theory | publisher = Springer-Verlag | year = 1990 | isbn=0-387-97329-X }} *{{cite book | first1 = Bruce C. | last1 = Berndt | first2 = Ronald J. | last2 = Evans | first3 = Kenneth S. | last3 = Williams | title = Gauss and Jacobi Sums | publisher = Wiley and Sons | year = 1998 | isbn=0-471-12807-4 }} *{{cite book | first1 = Henryk | last1 = Iwaniec | first2 = Emmanuel | last2 = Kowalski | title = Analytic number theory | publisher = American Mathematical Society | year = 2004 | isbn=0-8218-3633-1}} [[Category:Cyclotomic fields]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Cite book
(
edit
)
Template:Huh
(
edit
)
Template:Math
(
edit
)
Template:Mvar
(
edit
)
Template:Reflist
(
edit
)