Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Quadratic field
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{short description|Field (mathematics) generated by the square root of an integer}} In [[algebraic number theory]], a '''quadratic field''' is an [[algebraic number field]] of [[Degree of a field extension|degree]] two over <math>\mathbf{Q}</math>, the [[rational number]]s. Every such quadratic field is some <math>\mathbf{Q}(\sqrt{d})</math> where <math>d</math> is a (uniquely defined) [[square-free integer]] different from <math>0</math> and <math>1</math>. If <math>d>0</math>, the corresponding quadratic field is called a '''real quadratic field''', and, if <math>d<0</math>, it is called an '''imaginary quadratic field''' or a '''complex quadratic field''', corresponding to whether or not it is a [[Field extension|subfield]] of the field of the [[real number]]s. Quadratic fields have been studied in great depth, initially as part of the theory of [[binary quadratic form]]s. There remain some unsolved problems. The [[class number problem]] is particularly important. ==Ring of integers== {{Main|Quadratic integer}} ==Discriminant== For a nonzero square free integer <math>d</math>, the [[Discriminant of an algebraic number field|discriminant]] of the quadratic field <math>K = \mathbf{Q}(\sqrt{d})</math> is <math>d</math> if <math>d</math> is congruent to <math>1</math> modulo <math>4</math>, and otherwise <math>4d</math>. For example, if <math>d</math> is <math>-1</math>, then <math>K</math> is the field of [[Gaussian rational]]s and the discriminant is <math>-4</math>. The reason for such a distinction is that the [[ring of integers]] of <math>K</math> is generated by <math>(1+\sqrt{d})/2</math> in the first case and by <math>\sqrt{d}</math> in the second case. The set of discriminants of quadratic fields is exactly the set of [[fundamental discriminant]]s (apart from <math>1</math>, which is a fundamental discriminant but not the discriminant of a quadratic field). ==Prime factorization into ideals== Any prime number <math>p</math> gives rise to an ideal <math>p\mathcal{O}_K</math> in the [[ring of integers]] <math>\mathcal{O}_K</math> of a quadratic field <math>K</math>. In line with general theory of [[splitting of prime ideals in Galois extensions]], this may be<ref name=":0">{{Cite web|title=Number Rings|url=http://websites.math.leidenuniv.nl/algebra/ant.pdf|last=Stevenhagen|pages=36}}</ref> ;<math>p</math> is '''inert''': <math>(p)</math> is a prime ideal. : The quotient ring is the [[finite field]] with <math>p^2</math> elements: <math>\mathcal{O}_K / p\mathcal{O}_K = \mathbf{F}_{p^2}</math>. ;<math>p</math> '''splits''': <math>(p)</math> is a product of two distinct prime ideals of <math>\mathcal{O}_K</math>. : The quotient ring is the product <math>\mathcal{O}_K/p\mathcal{O}_K = \mathbf{F}_p\times\mathbf{F}_p</math>. ;<math>p</math> is '''ramified''': <math>(p)</math> is the square of a prime ideal of <math>\mathcal{O}_K</math>. :The quotient ring contains non-zero [[nilpotent]] elements. The third case happens if and only if <math>p</math> divides the discriminant <math>D</math>. The first and second cases occur when the [[Kronecker symbol]] <math>(D/p)</math> equals <math>-1</math> and <math>+1</math>, respectively. For example, if <math>p</math> is an odd prime not dividing <math>D</math>, then <math>p</math> splits if and only if <math>D</math> is congruent to a square modulo <math>p</math>. The first two cases are, in a certain sense, equally likely to occur as <math>p</math> runs through the primes—see [[Chebotarev density theorem]].<ref>{{Harvnb|Samuel|1972|pp=76f}}</ref> The law of [[quadratic reciprocity]] implies that the splitting behaviour of a prime <math>p</math> in a quadratic field depends only on <math>p</math> modulo <math>D</math>, where <math>D</math> is the field discriminant. == Class group == Determining the class group of a quadratic field extension can be accomplished using [[Minkowski's bound]] and the [[Kronecker symbol]] because of the finiteness of the [[Ideal class group|class group]].<ref>{{Cite web|title=Algebraic Number Theory, A Computational Approach|url=https://wstein.org/books/ant/ant.pdf|last=Stein|first=William|pages=77–86}}</ref> A quadratic field <math>K = \mathbf{Q}(\sqrt{d})</math> has [[Discriminant of an algebraic number field|discriminant]] <math display=block>\Delta_K = \begin{cases} d & d \equiv 1 \pmod 4 \\ 4d & d \equiv 2,3 \pmod 4; \end{cases}</math> so the Minkowski bound is<ref>{{Cite web|last=Conrad|first=Keith|title=CLASS GROUP CALCULATIONS|url=https://kconrad.math.uconn.edu/blurbs/gradnumthy/classgpex.pdf}}</ref><math display=block>M_K = \begin{cases} 2\sqrt{|\Delta|}/\pi & d < 0 \\ \sqrt{|\Delta|}/2 & d > 0 . \end{cases} </math> Then, the ideal class group is generated by the prime ideals whose norm is less than <math>M_K</math>. This can be done by looking at the decomposition of the ideals <math>(p)</math> for <math>p \in \mathbf{Z}</math> prime where <math>|p| < M_k.</math><ref name=":0" /> <sup>page 72</sup> These decompositions can be found using the [[Dedekind–Kummer theorem]]. ==Quadratic subfields of cyclotomic fields== ===The quadratic subfield of the prime cyclotomic field=== A classical example of the construction of a quadratic field is to take the unique quadratic field inside the [[cyclotomic field]] generated by a primitive <math>p</math>th root of unity, with <math>p</math> an odd prime number. The uniqueness is a consequence of [[Galois theory]], there being a unique subgroup of [[Index of a subgroup|index]] <math>2</math> in the Galois group over <math>\mathbf{Q}</math>. As explained at [[Gaussian period]], the discriminant of the quadratic field is <math>p</math> for <math>p=4n+1</math> and <math>-p</math> for <math>p=4n+3</math>. This can also be predicted from enough [[Ramification (mathematics)|ramification]] theory. In fact, <math>p</math> is the only prime that ramifies in the cyclotomic field, so <math>p</math> is the only prime that can divide the quadratic field discriminant. That rules out the 'other' discriminants <math>-4p</math> and <math>4p</math> in the respective cases. ===Other cyclotomic fields=== If one takes the other cyclotomic fields, they have Galois groups with extra <math>2</math>-torsion, so contain at least three quadratic fields. In general a quadratic field of field discriminant <math>D</math> can be obtained as a subfield of a cyclotomic field of <math>D</math>-th roots of unity. This expresses the fact that the [[Conductor (class field theory)|conductor]] of a quadratic field is the absolute value of its discriminant, a special case of the [[conductor-discriminant formula]]. ==Orders of quadratic number fields of small discriminant== The following table shows some [[order (ring theory)|orders]] of small discriminant of quadratic fields. The ''maximal order'' of an algebraic number field is its [[ring of integers]], and the discriminant of the maximal order is the discriminant of the field. The discriminant of a non-maximal order is the product of the discriminant of the corresponding maximal order by the square of the determinant of the matrix that expresses a basis of the non-maximal order over a basis of the maximal order. All these discriminants may be defined by the formula of {{slink|Discriminant of an algebraic number field|Definition}}. For real quadratic integer rings, the [[Ideal class group#Properties|ideal class number]], which measures the failure of unique factorization, is given in [https://oeis.org/A003649 OEIS A003649]; for the imaginary case, they are given in [https://oeis.org/A000924 OEIS A000924]. {| class="wikitable" |- ! Order ! Discriminant ! Class number ! Units ! Comments |- | <math>\mathbf{Z}\left[\sqrt{-5}\right]</math> | <math>-20</math> | <math>2</math> | <math>\pm 1</math> | Ideal classes <math>(1)</math>, <math>(2,1+\sqrt{-5})</math> |- | <math>\mathbf{Z}\left[(1+\sqrt{-19})/2\right]</math> | <math>-19</math> | <math>1</math> | <math>\pm 1</math> | [[Principal ideal domain]], not [[Euclidean domain|Euclidean]] |- | <math>\mathbf{Z}\left[2\sqrt{-1}\right]</math> | <math>-16</math> | <math>1</math> | <math>\pm 1</math> |Non-maximal order |- | <math>\mathbf{Z}\left[(1+\sqrt{-15})/2\right]</math> | <math>-15</math> | <math>2</math> | <math>\pm 1</math> |Ideal classes <math>(1)</math>, <math>(1,(1+\sqrt{-15})/2)</math> |- | <math>\mathbf{Z}\left[\sqrt{-3}\right]</math> | <math>-12</math> | <math>1</math> | <math>\pm 1</math> |Non-maximal order |- | <math>\mathbf{Z}\left[(1+\sqrt{-11})/2\right]</math> | <math>-11</math> | <math>1</math> | <math>\pm 1</math> | Euclidean |- | <math>\mathbf{Z}\left[\sqrt{-2}\right]</math> | <math>-8</math> | <math>1</math> | <math>\pm 1</math> | Euclidean |- | <math>\mathbf{Z}\left[(1+\sqrt{-7})/2\right]</math> | <math>-7</math> | <math>1</math> | <math>\pm 1</math> |[[Kleinian integers]] |- | <math>\mathbf{Z}\left[\sqrt{-1}\right]</math> | <math>-4</math> | <math>1</math> | <math>\pm 1,\pm i</math> (cyclic of order <math>4</math>) |[[Gaussian integers]] |- | <math>\mathbf{Z}\left[(1+\sqrt{-3})/2\right]</math> | <math>-3</math> | <math>1</math> | <math>\pm 1,(\pm 1 \pm \sqrt{-3})/2</math>. |[[Eisenstein integers]] |- | <math>\mathbf{Z}\left[ \sqrt{-21}\right]</math> | <math>-84</math> | <math>4</math> | |Class group non-cyclic: <math>(\mathbf{Z}/2\mathbf{Z})^2</math> |- | <math>\mathbf{Z}\left[ (1+\sqrt{5})/2\right]</math> | <math>5</math> | <math>1</math> | <math>\pm((1+\sqrt{5})/2)^n</math> (norm <math>(-1)^n</math>) | |- | <math>\mathbf{Z}\left[ \sqrt{2}\right]</math> | <math>8</math> | <math>1</math> | <math>\pm(1+\sqrt{2})^n</math> (norm <math>(-1)^n</math>) | |- | <math>\mathbf{Z}\left[ \sqrt{3}\right]</math> | <math>12</math> | <math>1</math> | <math>\pm(2+\sqrt{3})^n</math> (norm <math>1</math>) | |- | <math>\mathbf{Z}\left[ (1+\sqrt{13})/2\right]</math> | <math>13</math> | <math>1</math> | <math>\pm((3+\sqrt{13})/2)^n</math> (norm <math>(-1)^n</math>) | |- | <math>\mathbf{Z}\left[ (1+\sqrt{17})/2\right]</math> | <math>17</math> | <math>1</math> | <math>\pm(4+\sqrt{17})^n</math> (norm <math>(-1)^n</math>) | |- | <math>\mathbf{Z}\left[\sqrt{5}\right]</math> | <math>20</math> | <math>1</math> | <math>\pm(\sqrt{5}+2)^n</math> (norm <math>(-1)^n</math>) |Non-maximal order |} Some of these examples are listed in Artin, ''Algebra'' (2nd ed.), §13.8. ==See also== {{Div col}} *[[Eisenstein–Kronecker number]] *[[Genus character]] *[[Heegner number]] *[[Infrastructure (number theory)]] *[[Quadratic integer]] *[[Quadratic irrational]] *[[Stark–Heegner theorem]] *[[Dedekind zeta function]] *[[Quadratically closed field]] {{Div col end}} ==Notes== {{reflist}} ==References== * {{Citation |last=Buell |first=Duncan |title=Binary quadratic forms: classical theory and modern computations |publisher=[[Springer-Verlag]] |year=1989 |isbn=0-387-97037-1 |url-access=registration |url=https://archive.org/details/binaryquadraticf0000buel }} Chapter 6. * {{Citation|last=Samuel|first=Pierre|author-link=Pierre Samuel|year=1972|title=Algebraic Theory of Numbers|publisher=Hermann / Houghton Mifflin Company|location=Paris / Boston|edition=Hardcover|isbn=978-0-901-66506-5}} ** {{Citation|last=Samuel|first=Pierre|year=2008|title=Algebraic Theory of Numbers|publisher=Dover|edition=Paperback|isbn=978-0-486-46666-8|url={{google books|u9vCAgAAQBAJ|plainurl=yes}}}} * {{Citation |last1=Stewart |first1=I. N. |author-link1=Ian Stewart (mathematician) |last2=Tall |first2=D. O. |title=Algebraic number theory |publisher=Chapman and Hall |year=1979 |isbn=0-412-13840-9}} Chapter 3.1. == External links == *{{MathWorld|title=Quadratic Field|id=QuadraticField}} *{{springerEOM|title=Quadratic field|id=Quadratic_field&oldid=25501}} [[Category:Algebraic number theory]] [[Category:Field (mathematics)]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Citation
(
edit
)
Template:Cite web
(
edit
)
Template:Div col
(
edit
)
Template:Div col end
(
edit
)
Template:Harvnb
(
edit
)
Template:Main
(
edit
)
Template:MathWorld
(
edit
)
Template:Reflist
(
edit
)
Template:SfnRef
(
edit
)
Template:Short description
(
edit
)
Template:Slink
(
edit
)
Template:SpringerEOM
(
edit
)