Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Quadratic integral
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
In [[mathematics]], a '''quadratic integral''' is an [[integral]] of the form <math display="block">\int \frac{dx}{a+bx+cx^2}.</math> It can be evaluated by [[completing the square]] in the [[denominator]]. <math display="block">\int \frac{dx}{a+bx+cx^2} = \frac{1}{c} \int \frac{dx}{\left( x + \frac{b}{2c} \right)^{\!2} + \left( \frac{a}{c} - \frac{b^2}{4c^2} \right)}.</math> ==Positive-discriminant case== Assume that the [[discriminant]] ''q'' = ''b''<sup>2</sup> β 4''ac'' is positive. In that case, define ''u'' and ''A'' by <math display="block">u = x + \frac{b}{2c},</math> and <math display="block">-A^2 = \frac{a}{c} - \frac{b^2}{4c^2} = \frac{1}{4c^2}(4ac - b^2).</math> The quadratic integral can now be written as <math display="block">\int \frac{dx}{a+bx+cx^2} = \frac{1}{c} \int \frac{du}{u^2-A^2} = \frac{1}{c} \int \frac{du}{(u+A)(u-A)}.</math> The [[partial fraction decomposition]] <math display="block">\frac{1}{(u+A)(u-A)} = \frac{1}{2A}\!\left( \frac{1}{u-A} - \frac{1}{u+A} \right) </math> allows us to evaluate the integral: <math display="block">\frac{1}{c} \int \frac{du}{(u+A)(u-A)} = \frac{1}{2Ac} \ln \left( \frac{u - A}{u + A} \right) + \text{constant}.</math> The final result for the original integral, under the assumption that ''q'' > 0, is <math display="block">\int \frac{dx}{a+bx+cx^2} = \frac{1}{ \sqrt{q}} \ln \left( \frac{2cx + b - \sqrt{q}}{2cx+b+ \sqrt{q}} \right) + \text{constant}.</math> ==Negative-discriminant case== In case the [[discriminant]] ''q'' = ''b''<sup>2</sup> β 4''ac'' is negative, the second term in the denominator in <math display="block">\int \frac{dx}{a+bx+cx^2} = \frac{1}{c} \int \frac{dx}{\left( x+ \frac{b}{2c} \right)^{\!2} + \left( \frac{a}{c} - \frac{b^2}{4c^2} \right)}.</math> is positive. Then the integral becomes <math display="block">\begin{align} \frac{1}{c} \int \frac{du} {u^2 + A^2} & = \frac{1}{cA} \int \frac{du/A}{(u/A)^2 + 1 } \\[9pt] & = \frac{1}{cA} \int \frac{dw}{w^2 + 1} \\[9pt] & = \frac{1}{cA} \arctan(w) + \mathrm{constant} \\[9pt] & = \frac{1}{cA} \arctan\left(\frac{u}{A}\right) + \text{constant} \\[9pt] & = \frac{1}{c\sqrt{\frac{a}{c} - \frac{b^2}{4c^2}}} \arctan \left(\frac{x + \frac{b}{2c}}{\sqrt{\frac{a}{c} - \frac{b^2}{4c^2}}}\right) + \text{constant} \\[9pt] & = \frac{2}{\sqrt{4ac - b^2\, }} \arctan\left(\frac{2cx + b}{\sqrt{4ac - b^2}}\right) + \text{constant}. \end{align}</math> ==References== *Weisstein, Eric W. "[http://mathworld.wolfram.com/QuadraticIntegral.html Quadratic Integral]." From ''MathWorld''--A Wolfram Web Resource, wherein the following is referenced: *{{cite book |author-first1=Izrail Solomonovich |author-last1=Gradshteyn |author-link1=Izrail Solomonovich Gradshteyn |author-first2=Iosif Moiseevich |author-last2=Ryzhik |author-link2=Iosif Moiseevich Ryzhik |author-first3=Yuri Veniaminovich |author-last3=Geronimus |author-link3=Yuri Veniaminovich Geronimus |author-first4=Michail Yulyevich |author-last4=Tseytlin |author-link4=Michail Yulyevich Tseytlin |author-first5=Alan |author-last5=Jeffrey |editor-first1=Daniel |editor-last1=Zwillinger |editor-first2=Victor Hugo |editor-last2=Moll |editor-link2=Victor Hugo Moll |translator=Scripta Technica, Inc. |title=Table of Integrals, Series, and Products |publisher=[[Academic Press, Inc.]] |date=2015 |orig-year=October 2014 |edition=8 |language=English |isbn=978-0-12-384933-5 |lccn=2014010276 <!-- |url=https://books.google.com/books?id=NjnLAwAAQBAJ |access-date=2016-02-21-->|title-link=Gradshteyn and Ryzhik}} {{Calculus topics}} [[Category:Integral calculus]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Calculus topics
(
edit
)
Template:Cite book
(
edit
)