Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Quasi-arithmetic mean
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Generalization of means}} In [[mathematics]] and [[statistics]], the '''quasi-arithmetic mean''' or '''generalised ''f''-mean''' or '''Kolmogorov-Nagumo-de Finetti mean'''<ref>{{cite journal |last1=Nielsen |first1=Frank |last2=Nock |first2=Richard |title=Generalizing skew Jensen divergences and Bregman divergences with comparative convexity |journal=IEEE Signal Processing Letters |date=June 2017 |volume=24 |issue=8 |page=2 |doi=10.1109/LSP.2017.2712195 |arxiv=1702.04877 |bibcode=2017ISPL...24.1123N |s2cid=31899023 }}</ref> is one generalisation of the more familiar [[mean]]s such as the [[arithmetic mean]] and the [[geometric mean]], using a function <math>f</math>. It is also called '''Kolmogorov mean''' after Soviet mathematician [[Andrey Kolmogorov]]. It is a broader generalization than the regular [[generalized mean]]. ==Definition== If ''f'' is a function which maps an interval <math>I</math> of the real line to the [[real number]]s, and is both [[continuous function|continuous]] and [[injective function|injective]], the '''''f''-mean of <math>n</math> numbers''' <math>x_1, \dots, x_n \in I</math> is defined as <math>M_f(x_1, \dots, x_n) = f^{-1}\left( \frac{f(x_1)+ \cdots + f(x_n)}n \right)</math>, which can also be written :<math> M_f(\vec x)= f^{-1}\left(\frac{1}{n} \sum_{k=1}^{n}f(x_k) \right)</math> We require ''f'' to be injective in order for the [[inverse function]] <math>f^{-1}</math> to exist. Since <math>f</math> is defined over an interval, <math>\frac{f(x_1)+ \cdots + f(x_n)}n</math> lies within the domain of <math>f^{-1}</math>. Since ''f'' is injective and continuous, it follows that ''f'' is a strictly [[monotonic function]], and therefore that the ''f''-mean is neither larger than the largest number of the tuple <math>x</math> nor smaller than the smallest number in <math>x</math>. == Examples == * If <math>I = \mathbb{R}</math>, the [[real line]], and <math>f(x) = x</math>, (or indeed any linear function <math>x\mapsto a\cdot x + b</math>, <math>a</math> not equal to 0) then the ''f''-mean corresponds to the [[arithmetic mean]]. * If <math>I = \mathbb{R}^+</math>, the [[positive real numbers]] and <math>f(x) = \log(x)</math>, then the ''f''-mean corresponds to the [[geometric mean]]. According to the ''f''-mean properties, the result does not depend on the base of the [[logarithm]] as long as it is positive and not 1. * If <math>I = \mathbb{R}^+</math> and <math>f(x) = \frac{1}{x}</math>, then the ''f''-mean corresponds to the [[harmonic mean]]. * If <math>I = \mathbb{R}^+</math> and <math>f(x) = x^p</math>, then the ''f''-mean corresponds to the [[power mean]] with exponent <math>p</math>. * If <math>I = \mathbb{R}</math> and <math>f(x) = \exp(x)</math>, then the ''f''-mean is the mean in the [[log semiring]], which is a constant shifted version of the [[LogSumExp]] (LSE) function (which is the logarithmic sum), <math>M_f(x_1, \dots, x_n) = \mathrm{LSE}(x_1, \dots, x_n)-\log(n)</math>. The <math>-\log(n)</math> corresponds to dividing by {{mvar|''n''}}, since logarithmic division is linear subtraction. The LogSumExp function is a [[smooth maximum]]: a smooth approximation to the maximum function. == Properties == The following properties hold for <math>M_f</math> for any single function <math>f</math>: '''Symmetry:''' The value of <math>M_f</math> is unchanged if its arguments are permuted. '''Idempotency:''' for all ''x'', <math>M_f(x,\dots,x) = x</math>. '''Monotonicity''': <math>M_f</math> is monotonic in each of its arguments (since <math>f</math> is [[Monotonic function|monotonic]]). '''Continuity''': <math>M_f</math> is continuous in each of its arguments (since <math>f</math> is continuous). '''Replacement''': Subsets of elements can be averaged a priori, without altering the mean, given that the multiplicity of elements is maintained. With <math>m=M_f(x_1,\dots,x_k)</math> it holds: :<math>M_f(x_1,\dots,x_k,x_{k+1},\dots,x_n) = M_f(\underbrace{m,\dots,m}_{k \text{ times}},x_{k+1},\dots,x_n)</math> [[Partition of a set|'''Partitioning''']]: The computation of the mean can be split into computations of equal sized sub-blocks:<math> M_f(x_1,\dots,x_{n\cdot k}) = M_f(M_f(x_1,\dots,x_{k}), M_f(x_{k+1},\dots,x_{2\cdot k}), \dots, M_f(x_{(n-1)\cdot k + 1},\dots,x_{n\cdot k})) </math> '''Self-distributivity''': For any quasi-arithmetic mean <math>M</math> of two variables: <math>M(x,M(y,z))=M(M(x,y),M(x,z))</math>. '''Mediality''': For any quasi-arithmetic mean <math>M</math> of two variables:<math>M(M(x,y),M(z,w))=M(M(x,z),M(y,w))</math>. '''Balancing''': For any quasi-arithmetic mean <math>M</math> of two variables:<math>M\big(M(x, M(x, y)), M(y, M(x, y))\big)=M(x, y)</math>. '''[[Central limit theorem]]''' : Under regularity conditions, for a sufficiently large sample, <math>\sqrt{n}\{M_f(X_1, \dots, X_n) - f^{-1}(E_f(X_1, \dots, X_n))\}</math> is approximately normal.<ref>{{cite journal|last=de Carvalho|first=Miguel|title=Mean, what do you Mean?|journal=[[The American Statistician]]|year=2016|volume=70|issue=3|pages=764‒776|doi=10.1080/00031305.2016.1148632|url=https://zenodo.org/record/895400|hdl=20.500.11820/fd7a8991-69a4-4fe5-876f-abcd2957a88c|s2cid=219595024 |hdl-access=free}}</ref> A similar result is available for Bajraktarević means and deviation means, which are generalizations of quasi-arithmetic means.<ref>{{Cite journal |last1=Barczy |first1=Mátyás |last2=Burai |first2=Pál |date=2022-04-01 |title=Limit theorems for Bajraktarević and Cauchy quotient means of independent identically distributed random variables |url=https://link.springer.com/article/10.1007/s00010-021-00813-x |journal=Aequationes Mathematicae |language=en |volume=96 |issue=2 |pages=279–305 |doi=10.1007/s00010-021-00813-x |issn=1420-8903}}</ref><ref>{{Cite journal |last1=Barczy |first1=Mátyás |last2=Páles |first2=Zsolt |date=2023-09-01 |title=Limit Theorems for Deviation Means of Independent and Identically Distributed Random Variables |url=https://link.springer.com/article/10.1007/s10959-022-01225-6 |journal=Journal of Theoretical Probability |language=en |volume=36 |issue=3 |pages=1626–1666 |doi=10.1007/s10959-022-01225-6 |issn=1572-9230|arxiv=2112.05183 }}</ref> '''Scale-invariance''': The quasi-arithmetic mean is invariant with respect to offsets and scaling of <math>f</math>: <math>\forall a\ \forall b\ne0 ((\forall t\ g(t)=a+b\cdot f(t)) \Rightarrow \forall x\ M_f (x) = M_g (x)</math>. == Characterization == There are several different sets of properties that characterize the quasi-arithmetic mean (i.e., each function that satisfies these properties is an ''f''-mean for some function ''f''). * '''Mediality''' is essentially sufficient to characterize quasi-arithmetic means.<ref name=":0">{{Cite book|title=Functional equations in several variables. With applications to mathematics, information theory and to the natural and social sciences. Encyclopedia of Mathematics and its Applications, 31.|author=Aczél, J.|author2=Dhombres, J. G.|publisher=Cambridge Univ. Press|year=1989|location=Cambridge}}</ref>{{Rp|chapter 17}} * '''Self-distributivity''' is essentially sufficient to characterize quasi-arithmetic means.<ref name=":0" />{{Rp|chapter 17}} * '''Replacement''': Kolmogorov proved that the five properties of symmetry, fixed-point, monotonicity, continuity, and replacement fully characterize the quasi-arithmetic means.<ref>{{Cite web|url=https://math.stackexchange.com/a/3261514/29780|title=Characterization of the quasi-arithmetic mean|last=Grudkin|first=Anton|date=2019|website=Math stackexchange}}</ref> * Continuity is superfluous in the characterization of two variables quasi-arithmetic means. See [10] for the details. * '''Balancing''': An interesting problem is whether this condition (together with symmetry, fixed-point, monotonicity and continuity properties) implies that the mean is quasi-arithmetic. [[Georg Aumann]] showed in the 1930s that the answer is no in general,<ref>{{cite journal|last=Aumann|first=Georg|year=1937|title=Vollkommene Funktionalmittel und gewisse Kegelschnitteigenschaften|journal=[[Journal für die reine und angewandte Mathematik]]|volume=1937|issue=176|pages=49–55|doi=10.1515/crll.1937.176.49|s2cid=115392661}}</ref> but that if one additionally assumes <math>M</math> to be an [[analytic function]] then the answer is positive.<ref>{{cite journal|last=Aumann|first=Georg|year=1934|title=Grundlegung der Theorie der analytischen Analytische Mittelwerte|journal=Sitzungsberichte der Bayerischen Akademie der Wissenschaften|pages=45–81}}</ref> == Homogeneity == [[Mean]]s are usually [[Homogeneous function|homogeneous]], but for most functions <math>f</math>, the ''f''-mean is not. Indeed, the only homogeneous quasi-arithmetic means are the [[power mean]]s (including the [[geometric mean]]); see Hardy–Littlewood–Pólya, page 68. The homogeneity property can be achieved by normalizing the input values by some (homogeneous) mean <math>C</math>. :<math>M_{f,C} x = C x \cdot f^{-1}\left( \frac{f\left(\frac{x_1}{C x}\right) + \cdots + f\left(\frac{x_n}{C x}\right)}{n} \right)</math> However this modification may violate [[Monotonic function|monotonicity]] and the partitioning property of the mean. == Generalizations == Consider a Legendre-type strictly convex function <math>F</math>. Then the [[gradient]] map <math>\nabla F</math> is globally invertible and the weighted multivariate quasi-arithmetic mean<ref>{{cite arXiv|last=Nielsen|first=Frank|year=2023|title=Beyond scalar quasi-arithmetic means: Quasi-arithmetic averages and quasi-arithmetic mixtures in information geometry|eprint= 2301.10980| class = cs.IT}}</ref> is defined by <math> M_{\nabla F}(\theta_1,\ldots,\theta_n;w) = {\nabla F}^{-1}\left(\sum_{i=1}^n w_i \nabla F(\theta_i)\right) </math>, where <math>w</math> is a normalized weight vector (<math>w_i=\frac{1}{n}</math> by default for a balanced average). From the convex duality, we get a dual quasi-arithmetic mean <math>M_{\nabla F^*}</math> associated to the quasi-arithmetic mean <math>M_{\nabla F}</math>. For example, take <math>F(X)=-\log\det(X)</math> for <math>X</math> a symmetric positive-definite matrix. The pair of matrix quasi-arithmetic means yields the matrix harmonic mean: <math>M_{\nabla F}(\theta_1,\theta_2)=2(\theta_1^{-1}+\theta_2^{-1})^{-1}. </math> == See also == * [[Generalized mean]] * [[Jensen's inequality]] == References == * Andrey Kolmogorov (1930) "On the Notion of Mean", in "Mathematics and Mechanics" (Kluwer 1991) — pp. 144–146. * Andrey Kolmogorov (1930) Sur la notion de la moyenne. Atti Accad. Naz. Lincei 12, pp. 388–391. * John Bibby (1974) "Axiomatisations of the average and a further generalisation of monotonic sequences," Glasgow Mathematical Journal, vol. 15, pp. 63–65. * Hardy, G. H.; Littlewood, J. E.; Pólya, G. (1952) Inequalities. 2nd ed. Cambridge Univ. Press, Cambridge, 1952. * B. De Finetti, [http://www.brunodefinetti.it/Opere/concettodiMedia.pdf "Sul concetto di media"], vol. 3, p. 36996, 1931, istituto italiano degli attuari. {{DEFAULTSORT:Quasi-Arithmetic Mean}} [[Category:Means]] <references />[10] [https://rdcu.be/dVZA1 MR4355191 - Characterization of quasi-arithmetic means without regularity condition] [https://rdcu.be/dVZA1 Burai, P.; Kiss, G.; Szokol, P.] [https://rdcu.be/dVZA1 Acta Math. Hungar. 165 (2021), no. 2, 474–485.] [11] MR4574540 - A dichotomy result for strictly increasing bisymmetric maps Burai, Pál; Kiss, Gergely; Szokol, Patricia J. Math. Anal. Appl. 526 (2023), no. 2, Paper No. 127269, 9 pp.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Cite arXiv
(
edit
)
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite web
(
edit
)
Template:Mvar
(
edit
)
Template:Rp
(
edit
)
Template:Short description
(
edit
)