Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Quaternion group
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Non-abelian group of order eight}} {|class="wikitable" align="right" style="text-align:center; margin-left:0.5em;" |+Quaternion group multiplication table (simplified form) |- !width=15| !width=15|{{math|1}} !width=15|{{math|'''i'''}} !width=15|{{math|'''j'''}} !width=15|{{math|'''k'''}} |- !{{math|1}} |{{math|1}} |{{math|'''i'''}} |{{math|'''j'''}} |{{math|'''k'''}} |- !{{math|'''i'''}} |{{math|'''i'''}} |{{math|−1}} |{{math|'''k'''}} |{{math|−'''j'''}} |- !{{math|'''j'''}} |{{math|'''j'''}} |{{math|−'''k'''}} |{{math|−1}} |{{math|'''i'''}} |- !{{math|'''k'''}} |{{math|'''k'''}} |{{math|'''j'''}} |{{math|−'''i'''}} |{{math|−1}} |} {{Group theory sidebar |Finite}} [[Image:GroupDiagramQ8.svg|240px|thumb|[[Cycle graph (group)|Cycle diagram]] of Q<sub>8</sub>. Each color specifies a series of powers of any element connected to the identity element e = 1. For example, the cycle in red reflects the fact that i<sup>2</sup> = {{overline|e}}, i<sup>3</sup> = {{overline|i}} and i<sup>4</sup> = e. The red cycle also reflects that {{overline|i}}<sup>2</sup> = {{overline|e}}, {{overline|i}}<sup>3</sup> = i and {{overline|i}}<sup>4</sup> = e.]] In [[group theory]], the '''quaternion group''' Q<sub>8</sub> (sometimes just denoted by Q) is a [[nonabelian group|non-abelian]] [[group (mathematics)|group]] of [[Group order|order]] eight, isomorphic to the eight-element subset <math>\{1,i,j,k,-1,-i,-j,-k\}</math> of the [[quaternion]]s under multiplication. It is given by the [[presentation of a group|group presentation]] :<math>\mathrm{Q}_8 = \langle \bar{e},i,j,k \mid \bar{e}^2 = e, \;i^2 = j^2 = k^2 = ijk = \bar{e} \rangle ,</math> where ''e'' is the identity element and {{overline|''e''}} [[commutativity|commutes]] with the other elements of the group. These relations, discovered by [[W. R. Hamilton]], also generate the quaternions as an algebra over the real numbers. Another presentation of Q<sub>8</sub> is :<math>\mathrm{Q}_8 = \langle a,b \mid a^4 = e, a^2 = b^2, ba = a^{-1}b\rangle.</math> Like many other finite groups, it [[Inverse Galois problem|can be realized]] as the [[#Galois group|Galois group]] of a certain field of [[algebraic number]]s.<ref name=":0" /> == Compared to dihedral group == The quaternion group Q<sub>8</sub> has the same order as the [[dihedral group]] [[Examples of groups#The symmetry group of a square: dihedral group of order 8|D<sub>4</sub>]], but a different structure, as shown by their Cayley and cycle graphs: {| class="wikitable" style="width: 500px; text-align: center;" ! ! Q<sub>8</sub> ! [[dihedral group of order 8|D<sub>4</sub>]] |- ! [[Cayley graph]] |style="vertical-align:top;"| [[Image:Cayley graph Q8.svg|200px]]<br/>Red arrows connect ''g''<span style="color:red;">→</span>''gi'', green connect ''g''<span style="color:lightgreen;">→</span>''gj''. |style="vertical-align:top;"| [[File:Dih 4 Cayley Graph; generators a, b.svg|220px]] |- ! [[Cycle graph (algebra)|Cycle graph]] | [[File:GroupDiagramQ8.svg|120px]] | [[File:Dih4 cycle graph.svg|120px]] |} In the diagrams for D<sub>4</sub>, the group elements are marked with their action on a letter F in the defining representation '''R'''<sup>2</sup>. The same cannot be done for Q<sub>8</sub>, since it has no faithful representation in '''R'''<sup>2</sup> or '''R'''<sup>3</sup>. D<sub>4</sub> can be realized as a subset of the [[split-quaternion]]s in the same way that Q<sub>8</sub> can be viewed as a subset of the quaternions. == Cayley table == The [[Cayley table]] (multiplication table) for Q<sub>8</sub> is given by:<ref>See also [http://www.wolframalpha.com/input/?i=Quaternion+group a table] from [[Wolfram Alpha]]</ref> {|class="wikitable" style="text-align:right" ! × || e || {{overline|e}} || i || {{overline|i}} || j || {{overline|j}} || k || {{overline|k}} |- ! e | e || {{overline|e}} ||bgcolor=#ffcccc| i ||bgcolor=#ffcccc| {{overline|i}} ||bgcolor=#ccffcc| j ||bgcolor=#ccffcc| {{overline|j}} ||bgcolor=#ccccff| k ||bgcolor=#ccccff| {{overline|k}} |- ! {{overline|e}} | {{overline|e}} || e ||bgcolor=#ffcccc| {{overline|i}} ||bgcolor=#ffcccc| i ||bgcolor=#ccffcc| {{overline|j}} ||bgcolor=#ccffcc| j ||bgcolor=#ccccff| {{overline|k}} ||bgcolor=#ccccff| k |- ! i |bgcolor=#ffcccc| i ||bgcolor=#ffcccc| {{overline|i}} || {{overline|e}} || e ||bgcolor=#ccccff| k ||bgcolor=#ccccff| {{overline|k}} ||bgcolor=#ccffcc| {{overline|j}} ||bgcolor=#ccffcc| j |- ! {{overline|i}} |bgcolor=#ffcccc| {{overline|i}} ||bgcolor=#ffcccc| i || e || {{overline|e}} ||bgcolor=#ccccff| {{overline|k}} ||bgcolor=#ccccff| k ||bgcolor=#ccffcc| j ||bgcolor=#ccffcc| {{overline|j}} |- ! j |bgcolor=#ccffcc| j ||bgcolor=#ccffcc| {{overline|j}} ||bgcolor=#ccccff| {{overline|k}} ||bgcolor=#ccccff| k || {{overline|e}} || e ||bgcolor=#ffcccc| i ||bgcolor=#ffcccc| {{overline|i}} |- ! {{overline|j}} |bgcolor=#ccffcc| {{overline|j}} ||bgcolor=#ccffcc| j ||bgcolor=#ccccff| k ||bgcolor=#ccccff| {{overline|k}} || e || {{overline|e}} ||bgcolor=#ffcccc| {{overline|i}} ||bgcolor=#ffcccc| i |- ! k |bgcolor=#ccccff| k ||bgcolor=#ccccff| {{overline|k}} ||bgcolor=#ccffcc| j ||bgcolor=#ccffcc| {{overline|j}} ||bgcolor=#ffcccc| {{overline|i}} ||bgcolor=#ffcccc| i || {{overline|e}} || e |- ! {{overline|k}} |bgcolor=#ccccff| {{overline|k}} ||bgcolor=#ccccff| k ||bgcolor=#ccffcc| {{overline|j}} ||bgcolor=#ccffcc| j ||bgcolor=#ffcccc| i ||bgcolor=#ffcccc| {{overline|i}} || e || {{overline|e}} |} == Properties == The elements ''i'', ''j'', and ''k'' all have [[order (group theory)|order]] four in Q<sub>8</sub> and any two of them generate the entire group. Another [[presentation of a group|presentation]] of Q<sub>8</sub><ref name="Johnson44-45">{{harvnb|Johnson|1980|loc=pp. 44–45}}</ref> based in only two elements to skip this redundancy is: :<math>\left \langle x,y \mid x^4 = 1, x^2 = y^2, y^{-1}xy = x^{-1} \right \rangle.</math> For instance, writing the group elements in [[Monomial order#lexicographic order|lexicographically]] minimal normal forms, one may identify: <blockquote><math>\{e, \bar e, i, \bar{i}, j, \bar{j}, k, \bar{k}\} \leftrightarrow \{e, x^2, x, x^3, y, x^2 y, xy, x^3 y \}. </math> </blockquote>The quaternion group has the unusual property of being [[Hamiltonian group|Hamiltonian]]: Q<sub>8</sub> is non-abelian, but every [[subgroup]] is [[normal subgroup|normal]].<ref>See Hall (1999), [https://books.google.com/books?id=oyxnWF9ssI8C&pg=PA190 p. 190]</ref> Every Hamiltonian group contains a copy of Q<sub>8</sub>.<ref>See Kurosh (1979), [https://books.google.com/books?id=rp9c0nyjkbgC&pg=PA67 p. 67]</ref> The quaternion group Q<sub>8</sub> and the dihedral group D<sub>4</sub> are the two smallest examples of a [[nilpotent group|nilpotent]] non-abelian group. The [[center of a group|center]] and the [[commutator subgroup]] of Q<sub>8</sub> is the subgroup <math>\{e,\bar{e}\}</math>. The [[inner automorphism group]] of Q<sub>8</sub> is given by the group modulo its center, i.e. the [[factor group]] <math>\mathrm{Q}_8/\{e,\bar{e}\},</math> which is [[isomorphic]] to the [[Klein four-group]] V. The full [[automorphism group]] of Q<sub>8</sub> is [[isomorphic]] to S<sub>4</sub>, the [[symmetric group]] on four letters (see ''Matrix representations'' below), and the [[outer automorphism group]] of Q<sub>8</sub> is thus S<sub>4</sub>/V, which is isomorphic to S<sub>3</sub>. The quaternion group Q<sub>8</sub> has five conjugacy classes, <math>\{e\}, \{\bar{e}\}, \{i,\bar{i}\}, \{j,\bar{j}\}, \{k,\bar{k}\},</math> and so five [[irreducible representation]]s over the complex numbers, with dimensions 1, 1, 1, 1, 2: '''Trivial representation'''. '''Sign representations with i, j, k-kernel''': Q<sub>8</sub> has three maximal normal subgroups: the cyclic subgroups generated by i, j, and k respectively. For each maximal normal subgroup ''N'', we obtain a one-dimensional representation factoring through the 2-element [[quotient group]] ''G''/''N''. The representation sends elements of ''N'' to 1, and elements outside ''N'' to −1. '''2-dimensional representation''': Described below in ''Matrix representations''. It is not [[Real representation|realizable over the real numbers]], but is a complex representation: indeed, it is just the quaternions <math>\mathbb{H}</math> considered as an algebra over <math>\mathbb C</math>, and the action is that of left multiplication by <math>Q_8\subset \mathbb H </math>. The [[character table]] of Q<sub>8</sub> turns out to be the same as that of D<sub>4</sub>: {| class="wikitable" |- ! Representation(ρ)/Conjugacy class !! { e } !! { {{overline|e}} } !! { i, {{overline|i}} } !! { j, {{overline|j}} } !! { k, {{overline|k}} } |- | Trivial representation || 1 || 1 || 1 || 1 || 1 |- | Sign representation with i-kernel || 1 || 1 || 1 || −1 || −1 |- | Sign representation with j-kernel || 1 || 1 || −1 || 1 || −1 |- | Sign representation with k-kernel || 1 || 1 || −1 || −1 || 1 |- | 2-dimensional representation || 2 || −2 || 0 || 0 || 0 |} Nevertheless, all the irreducible characters <math>\chi_\rho</math> in the rows above have real values, this gives the [[Semisimple algebra#Classification|decomposition]] of the real [[group ring|group algebra]] of <math>G = \mathrm{Q}_8</math> into minimal two-sided [[Ideal (ring theory)|ideals]]: :<math>\R[\mathrm{Q}_8]=\bigoplus_\rho (e_\rho),</math> where the [[Idempotent (ring theory)|idempotents]] <math>e_\rho\in \R[\mathrm{Q}_8]</math> correspond to the irreducibles: :<math>e_\rho = \frac{\dim(\rho)}{|G|}\sum_{g\in G} \chi_\rho(g^{-1})g,</math> so that :<math>\begin{align} e_{\text{triv}} &= \tfrac 18(e + \bar e + i +\bar i+j+\bar j+k+\bar k) \\ e_{i\text{-ker}} &= \tfrac 18(e + \bar e + i +\bar i-j-\bar j-k-\bar k) \\ e_{j\text{-ker}} &= \tfrac 18(e + \bar e - i -\bar i+j+\bar j-k-\bar k) \\ e_{k\text{-ker}} &= \tfrac 18(e + \bar e - i -\bar i-j-\bar j+k+\bar k) \\ e_{2} &= \tfrac 28(2e - 2\bar e) = \tfrac 12(e - \bar e) \end{align}</math> Each of these irreducible ideals is isomorphic to a real [[central simple algebra]], the first four to the real field <math>\R</math>. The last ideal <math>(e_2)</math> is isomorphic to the [[skew field]] of [[quaternion]]s <math>\mathbb{H}</math> by the correspondence: :<math>\begin{align} \tfrac12(e-\bar e) &\longleftrightarrow 1, \\ \tfrac12(i-\bar i) &\longleftrightarrow i, \\ \tfrac12(j-\bar j) &\longleftrightarrow j, \\ \tfrac12(k-\bar k) &\longleftrightarrow k. \end{align}</math> Furthermore, the projection homomorphism <math>\R[\mathrm{Q}_8]\to (e_2)\cong \mathbb{H}</math> given by <math>r\mapsto re_2</math> has kernel ideal generated by the idempotent: :<math>e_2^\perp = e_1+e_{i\text{-ker}}+e_{j\text{-ker}}+e_{k\text{-ker}} = \tfrac{1}{2}(e+\bar e), </math> so the quaternions can also be obtained as the [[quotient ring]] <math>\R[\mathrm{Q}_8]/(e+\bar e)\cong \mathbb H</math>. Note that this is irreducible as a real representation of <math>Q_8</math>, but splits into two copies of the two-dimensional irreducible when extended to the complex numbers. Indeed, the complex group algebra is <math>\C[\mathrm{Q}_8] \cong \C^{\oplus 4} \oplus M_2(\C),</math> where <math>M_2(\C) \cong \mathbb{H} \otimes_{\R} \C</math> is the algebra of [[biquaternion]]s. == Matrix representations == [[File:Quaternion group; Cayley table; subgroup of SL(2,C).svg|thumb|Multiplication table of quaternion group as a subgroup of [[Special linear group|SL]](2,[[Complex number|'''C''']]). The entries are represented by sectors corresponding to their arguments: 1 (green), ''i'' (blue), −1 (red), −''i'' (yellow).]] The two-dimensional irreducible complex [[group representation|representation]] described above gives the quaternion group Q<sub>8</sub> as a subgroup of the [[general linear group]] <math>\operatorname{GL}(2, \C)</math>. The quaternion group is a multiplicative subgroup of the quaternion algebra: :<math>\H = \R 1 + \R i + \R j + \R k= \C 1+ \C j,</math> which has a [[regular representation]] <math>\rho:\H \to \operatorname{M}(2, \C)</math> by left multiplication on itself considered as a complex vector space with basis <math>\{1,j\},</math> so that <math>z \in \H</math> corresponds to the <math>\C</math>-linear mapping <math>\rho_z: a + jb \mapsto z\cdot(a + jb).</math> The resulting representation :<math>\begin{cases} \rho:\mathrm{Q}_8 \to \operatorname{GL}(2,\C)\\ g\longmapsto\rho_g \end{cases}</math> is given by: :<math>\begin{matrix} e \mapsto \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} & i \mapsto \begin{pmatrix} i & 0 \\ 0 & \!\!\!\!-i \end{pmatrix}& j \mapsto \begin{pmatrix} 0 & \!\!\!\!-1 \\ 1 & 0 \end{pmatrix}& k \mapsto \begin{pmatrix} 0 & \!\!\!\!-i \\ \!\!\!-i & 0 \end{pmatrix} \\ \overline{e} \mapsto \begin{pmatrix} \!\!\!-1 & 0 \\ 0 & \!\!\!\!-1 \end{pmatrix} & \overline{i} \mapsto \begin{pmatrix} \!\!\!-i & 0 \\ 0 & i \end{pmatrix}& \overline{j} \mapsto \begin{pmatrix} 0 & 1 \\ \!\!\!-1 & 0 \end{pmatrix}& \overline{k} \mapsto \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}. \end{matrix} </math> Since all of the above matrices have unit determinant, this is a representation of Q<sub>8</sub> in the [[special linear group]] <math>\operatorname{SL}(2,\C)</math>.<ref>{{harvnb|Artin|1991}}</ref> A variant gives a representation by [[Unitary matrix|unitary matrices]] (table at right). Let <math>g\in \mathrm{Q}_8</math> correspond to the linear mapping <math>\rho_g:a+bj\mapsto (a + bj)\cdot jg^{-1}j^{-1},</math> so that <math>\rho:\mathrm{Q}_8 \to \operatorname{SU}(2)</math> is given by: :<math>\begin{matrix} e \mapsto \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} & i \mapsto \begin{pmatrix} i & 0 \\ 0 & \!\!\!\!-i \end{pmatrix}& j \mapsto \begin{pmatrix} 0 & 1 \\ \!\!\!-1 & 0 \end{pmatrix}& k \mapsto \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} \\ \overline{e} \mapsto \begin{pmatrix} \!\!\!-1 & 0 \\ 0 & \!\!\!\!-1 \end{pmatrix} & \overline{i} \mapsto \begin{pmatrix} \!\!\!-i & 0 \\ 0 & i \end{pmatrix}& \overline{j} \mapsto \begin{pmatrix} 0 & \!\!\!\!-1 \\ 1 & 0 \end{pmatrix}& \overline{k} \mapsto \begin{pmatrix} 0 & \!\!\!\!-i \\ \!\!\!-i & 0 \end{pmatrix}. \end{matrix}</math> It is worth noting that physicists exclusively use a different convention for the <math>\operatorname{SU}(2)</math> matrix representation to make contact with the usual [[Spin (physics)#Pauli matrices|Pauli matrices]]: :<math>\begin{matrix} &e \mapsto \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \quad\, 1_{2\times2} &i \mapsto \begin{pmatrix} 0 & \!\!\!-i\! \\ \!\!-i\!\! & 0 \end{pmatrix} = -i \sigma_x &j \mapsto \begin{pmatrix} 0 & \!\!\!-1\! \\ 1 & 0 \end{pmatrix} = -i \sigma_y &k \mapsto \begin{pmatrix} \!\!-i\!\! & 0 \\ 0 & i \end{pmatrix} = -i \sigma_z\\ &\overline{e} \mapsto \begin{pmatrix} \!\!-1\! & 0 \\ 0 & \!\!\!-1\! \end{pmatrix} = -1_{2\times2} &\overline{i} \mapsto \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} = \,\,\,\, i \sigma_x &\overline{j} \mapsto \begin{pmatrix} 0 & 1 \\ \!\!-1\!\! & 0 \end{pmatrix} = \,\,\,\, i \sigma_y &\overline{k} \mapsto \begin{pmatrix} i & 0 \\ 0 & \!\!\!-i\! \end{pmatrix} = \,\,\,\, i \sigma_z. \end{matrix}</math> This particular choice is convenient and elegant when one describes [[Spinor|spin-1/2 states]] in the <math>(\vec{J}^2, J_z)</math> basis and considers [[Angular momentum operator#Derivation using ladder operators|angular momentum ladder operators]] <math>J_{\pm} = J_x \pm iJ_y.</math> [[File:Quaternion group; Cayley table; subgroup of SL(2,3).svg|thumb|Multiplication table of the quaternion group as a subgroup of [[:File:SL(2,3); Cayley table.svg|SL(2,3)]]. The field elements are denoted 0, +, −.]] There is also an important action of Q<sub>8</sub> on the 2-dimensional vector space over the [[finite field]] <math>\mathbb{F}_3 =\{0, 1, -1\}</math> (table at right). A [[Modular representation theory|modular representation]] <math>\rho: \mathrm{Q}_8 \to \operatorname{SL}(2, 3)</math> is given by :<math>\begin{matrix} e \mapsto \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} & i \mapsto \begin{pmatrix} 1 & 1 \\ 1 & \!\!\!\!-1 \end{pmatrix} & j \mapsto \begin{pmatrix} \!\!\!-1 & 1 \\ 1 & 1 \end{pmatrix} & k \mapsto \begin{pmatrix} 0 & \!\!\!\!-1 \\ 1 & 0 \end{pmatrix} \\ \overline{e} \mapsto \begin{pmatrix} \!\!\!-1 & 0 \\ 0 & \!\!\!\!-1 \end{pmatrix} & \overline{i} \mapsto \begin{pmatrix} \!\!\!-1 & \!\!\!\!-1 \\ \!\!\!-1 & 1 \end{pmatrix} & \overline{j} \mapsto \begin{pmatrix} 1 & \!\!\!\!-1 \\ \!\!\!-1 & \!\!\!\!-1 \end{pmatrix} & \overline{k} \mapsto \begin{pmatrix} 0 & 1 \\ \!\!\!-1 & 0 \end{pmatrix}. \end{matrix}</math> This representation can be obtained from the [[Field extension|extension field]]: :<math> \mathbb{F}_9 = \mathbb{F}_3 [k] = \mathbb{F}_3 1 + \mathbb{F}_3 k,</math> where <math>k^2=-1</math> and the multiplicative group <math>\mathbb{F}_9^{\times}</math> has four generators, <math>\pm(k\pm1),</math> of order 8. For each <math>z \in \mathbb{F}_9,</math> the two-dimensional <math>\mathbb{F}_3</math>-vector space <math>\mathbb{F}_9</math> admits a linear mapping: :<math>\begin{cases} \mu_z: \mathbb{F}_9 \to \mathbb{F}_9 \\ \mu_z(a+bk)=z\cdot(a+bk) \end{cases}</math> In addition we have the [[Frobenius endomorphism|Frobenius automorphism]] <math>\phi(a+bk)=(a+bk)^3</math> satisfying <math>\phi^2 = \mu_1 </math> and <math>\phi\mu_z = \mu_{\phi(z)}\phi.</math> Then the above representation matrices are: :<math>\begin{align} \rho(\bar e) &=\mu_{-1}, \\ \rho(i) &=\mu_{k+1}\phi, \\ \rho(j)&=\mu_{k-1} \phi, \\ \rho(k)&=\mu_{k}. \end{align}</math> This representation realizes Q<sub>8</sub> as a [[normal subgroup]] of {{nowrap|GL(2, 3)}}. Thus, for each matrix <math>m\in \operatorname{GL}(2,3)</math>, we have a group automorphism :<math>\begin{cases} \psi_m:\mathrm{Q}_8\to\mathrm{Q}_8 \\ \psi_m(g)=mgm^{-1} \end{cases}</math> with <math>\psi_I =\psi_{-I}=\mathrm{id}_{\mathrm{Q}_8}.</math> In fact, these give the full automorphism group as: :<math>\operatorname{Aut}(\mathrm{Q}_8) \cong \operatorname{PGL}(2, 3) = \operatorname{GL}(2,3)/\{\pm I\}\cong S_4.</math> This is isomorphic to the symmetric group S<sub>4</sub> since the linear mappings <math>m:\mathbb{F}_3^2 \to \mathbb{F}_3^2</math> permute the four one-dimensional subspaces of <math>\mathbb{F}_3^2,</math> i.e., the four points of the [[projective space]] <math>\mathbb{P}^1 (\mathbb{F}_3) = \operatorname{PG}(1,3).</math> Also, this representation permutes the eight non-zero vectors of <math>\mathbb{F}_3^2,</math> giving an embedding of Q<sub>8</sub> in the [[symmetric group]] S<sub>8</sub>, in addition to the embeddings given by the regular representations. ==Galois group== [[Richard Dedekind]] considered the field <math>\mathbb{Q}[\sqrt{2}, \sqrt{3}]</math> in attempting to relate the quaternion group to [[Galois theory]].<ref>[[Richard Dedekind]] (1887) "Konstrucktion der Quaternionkörpern", Ges. math. Werk II 376–84</ref> In 1936 [[Ernst Witt]] published his approach to the quaternion group through Galois theory.<ref>[[Ernst Witt]] (1936) "Konstruktion von galoisschen Körpern..."[[Crelle's Journal]] 174: 237-45</ref> In 1981, Richard Dean showed the quaternion group can be realized as the [[Galois group]] Gal(T/'''Q''') where '''Q''' is the field of [[rational number]]s and T is the [[splitting field]] of the polynomial :<math>x^8 - 72 x^6 + 180 x^4 - 144 x^2 + 36</math>. The development uses the [[fundamental theorem of Galois theory]] in specifying four intermediate fields between '''Q''' and T and their Galois groups, as well as two theorems on cyclic extension of degree four over a field.<ref name=":0">{{cite journal | last = Dean | first = Richard | year = 1981 | title = A Rational Polynomial whose Group is the Quaternions | journal = [[American Mathematical Monthly|The American Mathematical Monthly]] | volume = 88 | issue = 1 | pages = 42–45 | doi = 10.2307/2320711 | jstor = 2320711 }}</ref> ==Generalized quaternion group== A '''generalized quaternion group''' Q<sub>4''n''</sub> of order 4''n'' is defined by the presentation<ref name="Johnson44-45" /> :<math>\langle x,y \mid x^{2n} = y^4 = 1, x^n = y^2, y^{-1}xy = x^{-1}\rangle</math> for an integer {{nowrap|''n'' ≥ 2}}, with the usual quaternion group given by ''n'' = 2.<ref>Some authors (e.g., {{harvnb|Rotman|1995}}, pp. 87, 351) refer to this group as the dicyclic group, reserving the name generalized quaternion group to the case where ''n'' is a power of 2.</ref> [[Harold Scott MacDonald Coxeter|Coxeter]] calls Q<sub>4''n''</sub> the [[dicyclic group]] <math>\langle 2, 2, n\rangle</math>, a special case of the [[binary polyhedral group]] <math>\langle \ell, m, n\rangle</math> and related to the [[polyhedral group]] <math>(p,q,r)</math> and the [[dihedral group]] <math>(2,2,n)</math>. The generalized quaternion group can be realized as the subgroup of <math>\operatorname{GL}_2(\Complex)</math> generated by :<math>\left(\begin{array}{cc} \omega_n & 0 \\ 0 & \overline{\omega}_n \end{array} \right) \mbox{ and } \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right) </math> where <math>\omega_n = e^{i\pi/n}</math>.<ref name="Johnson44-45" /> It can also be realized as the subgroup of unit quaternions generated by<ref>{{harvnb|Brown|1982}}, p. 98</ref> <math>x=e^{i\pi/n}</math> and <math>y=j</math>. The generalized quaternion groups have the property that every [[abelian group|abelian]] subgroup is cyclic.<ref>{{harvnb|Brown|1982}}, p. 101, exercise 1</ref> It can be shown that a finite [[p-group|''p''-group]] with this property (every abelian subgroup is cyclic) is either cyclic or a generalized quaternion group as defined above.<ref>{{harvnb|Cartan|Eilenberg|1999}}, Theorem 11.6, p. 262</ref> Another characterization is that a finite ''p''-group in which there is a unique subgroup of order ''p'' is either cyclic or a 2-group isomorphic to generalized quaternion group.<ref>{{harvnb|Brown|1982}}, Theorem 4.3, p. 99</ref> In particular, for a finite field ''F'' with odd characteristic, the 2-Sylow subgroup of SL<sub>2</sub>(''F'') is non-abelian and has only one subgroup of order 2, so this 2-Sylow subgroup must be a generalized quaternion group, {{harv|Gorenstein|1980|p=42}}. Letting ''p<sup>r</sup>'' be the size of ''F'', where ''p'' is prime, the size of the 2-Sylow subgroup of SL<sub>2</sub>(''F'') is 2<sup>''n''</sup>, where {{nowrap|1=''n'' = ord<sub>2</sub>(''p''<sup>2</sup> − 1) + ord<sub>2</sub>(''r'')}}. The [[Brauer–Suzuki theorem]] shows that the groups whose Sylow 2-subgroups are generalized quaternion cannot be simple. Another terminology reserves the name "generalized quaternion group" for a dicyclic group of order a power of 2,<ref name="Roman">{{cite book|last1=Roman|first1=Steven|title=Fundamentals of Group Theory: An Advanced Approach|publisher=Springer|year=2011|isbn=9780817683016|pages=347–348|author-link1=Steven Roman}}</ref> which admits the presentation :<math>\langle x,y \mid x^{2^m} = y^4 = 1, x^{2^{m-1}} = y^2, y^{-1}xy = x^{-1}\rangle.</math> <!-- more ref, http://www.math.uconn.edu/~kconrad/blurbs/grouptheory/genquat.pdf http://groupprops.subwiki.org/wiki/Generalized_quaternion_group http://enc.slider.com/Enc/Quaternion_group -->==See also== *[[16-cell]] *[[Binary tetrahedral group]] *[[Clifford algebra]] *[[Dicyclic group]] *[[Hurwitz integral quaternion]] *[[List of small groups]] ==Notes== {{Reflist}} ==References== *{{citation |author-link=Michael Artin |last=Artin |first=Michael |title=Algebra |publisher=Prentice Hall |year=1991 |isbn=978-0-13-004763-2 }} *{{citation |last=Brown |first=Kenneth S.|author-link=Kenneth Brown (mathematician) |title=Cohomology of groups |publisher=Springer-Verlag |year=1982 |edition=3rd |isbn=978-0-387-90688-1 }} *{{citation |author-link=Henri Cartan |last1=Cartan |first1=Henri |last2=Eilenberg |first2=Samuel |author2-link=Samuel Eilenberg |title=Homological Algebra |publisher=Princeton University Press |year=1999 |isbn=978-0-691-04991-5 }} *{{cite book | author=Coxeter, H. S. M. | author-link=H. S. M. Coxeter | author2=Moser, W. O. J. | name-list-style=amp| title=Generators and Relations for Discrete Groups | location=New York | publisher=Springer-Verlag | year=1980 | isbn=0-387-09212-9}} * Dean, Richard A. (1981) "A rational polynomial whose group is the quaternions", [[American Mathematical Monthly]] 88:42–5. *{{Citation | last1=Gorenstein | first1=D. | author1-link=Daniel Gorenstein | title=Finite Groups | publisher=Chelsea | location=New York | isbn=978-0-8284-0301-6 | mr=569209 | year=1980}} *{{citation |last=Johnson |first=David L. |title=Topics in the theory of group presentations |publisher=[[Cambridge University Press]] |isbn=978-0-521-23108-4 |year=1980 |mr= 0695161 }} *{{Citation | last=Rotman | first=Joseph J. | title=An introduction to the theory of groups | publisher=Springer-Verlag | year=1995 | edition=4th | isbn=978-0-387-94285-8 }} * P.R. Girard (1984) "The quaternion group and modern physics", [[European Journal of Physics]] 5:25–32. *{{Citation | last=Hall | first=Marshall | author-link=Marshall Hall (mathematician) | title=The theory of groups | publisher=AMS Bookstore | year=1999 | edition=2nd | isbn=0-8218-1967-4 }} *{{Citation | last=Kurosh | first=Alexander G. | author-link=Aleksandr Gennadievich Kurosh | title=Theory of Groups | publisher=AMS Bookstore | year=1979 | isbn=0-8284-0107-1 }} ==External links== * {{MathWorld | urlname = QuaternionGroup | title = Quaternion group}} * [http://groupnames.org/#?quaternion Quaternion groups on GroupNames] * Quaternion group on [https://groupprops.subwiki.org/wiki/Quaternion_group GroupProps] * Conrad, Keith. [https://kconrad.math.uconn.edu/blurbs/grouptheory/genquat.pdf "Generalized Quaternions"] [[Category:Group theory]] [[Category:Finite groups]] [[Category:Quaternions|group]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Citation
(
edit
)
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Group theory sidebar
(
edit
)
Template:Harv
(
edit
)
Template:Harvnb
(
edit
)
Template:Math
(
edit
)
Template:MathWorld
(
edit
)
Template:Nowrap
(
edit
)
Template:Overline
(
edit
)
Template:Reflist
(
edit
)
Template:SfnRef
(
edit
)
Template:Short description
(
edit
)