Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
RC time constant
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{short description|Time constant of an RC circuit}} The '''RC time constant''', denoted ''{{mvar|τ}}'' (lowercase [[tau]]), the [[time constant]] of a [[resistor–capacitor circuit]] (RC circuit), is equal to the product of the circuit [[Electrical resistance and conductance|resistance]] and the circuit [[capacitance]]: :<math> \tau = RC \, . </math> [[File:RC Series Filter (with V&I Labels).svg|thumb|right|When the capacitance {{Mvar|C}} in this [[series and parallel circuits#Series circuits|series]] [[RC circuit]] is charged or discharged through the resistance {{Mvar|R}}, the capacitor's voltage {{Mvar|V<sub>C</sub>}} is an [[Exponential decay|exponentially-decaying]] function of time scaled by the RC time constant.|269x269px]] It is the [[time]] required to charge the [[capacitor]], through the [[resistor]], from an initial charge voltage of zero to approximately 63.2% of the value of an applied [[Direct current|DC voltage]], or to discharge the capacitor through the same resistor to approximately 36.8% of its initial charge voltage. These values are derived from the mathematical constant ''[[e (mathematical constant)|e]]'', where <math>63.2\% \approx 1{-}e^{-1}</math> and <math>36.8\% \approx e^{-1}</math>. When using the [[International System of Units]], {{mvar|R}} is in [[Ohm|ohms]], {{mvar|C}} is in [[Farad|farads]], and {{mvar|τ}} is in [[Second|seconds]]. Discharging a capacitor through a [[in series|series]] resistor to zero volts from an initial voltage of {{Mvar|V<sub>0</sub>}} results in the capacitor having the following [[Exponential decay|exponentially-decaying]] voltage curve: :<math>V_\text{C}(t) = V_0 \cdot (e^{-t/ \tau}) </math> Charging an uncharged capacitor through a series resistor to an applied constant input voltage {{Mvar|V<sub>0</sub>}} results in the capacitor having the following voltage curve over time: :<math>V_\text{C}(t) = V_0 \cdot (1-e^{-t/ \tau}) </math> which is a vertical [[mirror image]] of the charging curve. ==Cutoff frequency== The time constant <math>\tau</math> is related to the RC circuit's [[cutoff frequency]] ''f''<sub>c</sub>, by :<math>\tau = RC = \frac{1}{2 \pi f_c}</math> or, equivalently, :<math>f_c = \frac{1}{2 \pi R C} = \frac{1}{2 \pi \tau}</math> where resistance in [[Ohm|ohms]] and capacitance in [[farads]] yields the time constant in [[Second|seconds]] or the cutoff frequency in [[hertz]] (Hz). The cutoff frequency when expressed as an [[angular frequency]] <math>( \omega_c {=} 2 \pi f_c )</math> is simply the [[Multiplicative inverse|reciprocal]] of the time constant. Short conditional equations using the value for <math>10^6 / (2 \pi)</math>: :''f''<sub>c</sub> in Hz = 159155 / τ in [[Microsecond|μs]] :τ in μs = 159155 / ''f''<sub>c</sub> in Hz Other useful equations are: :rise time (20% to 80%) <math>t_r \approx 1.4 \tau \approx \frac{0.22}{f_c}</math> :rise time (10% to 90%) <math>t_r \approx 2.2 \tau \approx \frac{0.35}{f_c}</math> In more complicated circuits consisting of more than one resistor and/or capacitor, the [[open-circuit time constant method]] provides a way of approximating the cutoff frequency by computing a sum of several RC time constants. == Calculator == {{calculator |id=capacitance |formula=capacitance_number*pow(10,capacitance_unitlog10) |type=hidden |default=.000001 }} {{calculator |id=resistance |formula=resistance_number*pow(10,resistance_unitlog10) |type=hidden |default=1000000 }} {{calculator |id=tau |formula=resistance*capacitance |type=hidden |default=1 }} {{calculator |id=tau_unitlog10div3floor |formula=min(max(floor(log10(tau)/3),-5),5) |type=hidden |default=1 }} {{calculator |id=tau_sigdigits |formula=round(tau/pow(10,tau_unitlog10div3floor*3),3) |type=hidden |default=1 }} {{calculator |id=initialvoltage |formula=initialvoltage_number*pow(10,initialvoltage_unitlog10) |type=hidden |default=1 }} {{calculator |id=decaytime |formula=decaytime_in_tau*tau |type=hidden |default=1 }} {{calculator |id=decaytime_unitlog10div3floor |formula=min(max(ifzero(decaytime,0,floor(log10(abs(decaytime))/3)),-5),5) |type=hidden |default=1 }} {{calculator |id=decaytime_sigdigits |formula=round(decaytime/pow(10,decaytime_unitlog10div3floor*3),3) |type=hidden |default=1 }} {{calculator |id=fraction_of_initialvoltage |default=.368 |type=hidden |formula=exp(-decaytime_in_tau) }} {{calculator |id=percent_of_initialvoltage |default=36.8 |type=hidden |formula=round(fraction_of_initialvoltage*100,1) }} {{calculator |id=initialvoltage |type=hidden |default=1 |formula=initialvoltage_number*pow(10,initialvoltage_unitlog10) }} {{calculator |id=finalvoltage |type=hidden |size=4 |NaN-text=? |formula=initialvoltage*fraction_of_initialvoltage|default=0.368}} {{calculator |id=finalvoltage_unitlog10div3floor |formula=min(max(ifzero(decaytime,0,floor(log10(abs(finalvoltage))/3)),-5),5) |type=hidden |default=1 }} {{calculator |id=finalvoltage_sigdigits |formula=round(finalvoltage/pow(10,finalvoltage_unitlog10div3floor*3),3) |type=hidden |default=1 }} {{calculator |id=xpix |type=hidden |formula=87.5+562*max(min(decaytime_in_tau,5.1),-0.1)/5 }} {{calculator |id=ypix |type=hidden |formula=12+434.5*(1-max(min(percent_of_initialvoltage,101),0)/100) }} {{calculator |id=cutoff_angular |type=hidden |size=4 |NaN-text=? |formula=1/tau |default=1 }} {{calculator |id=cutoff_ordinal |type=hidden |size=4 |NaN-text=? |formula=cutoff_angular/(2*PI) |default=0.159 }} {{calculator |id=cutoff_angular_unitlog10div3floor |formula=min(max(floor(log10(cutoff_angular)/3),-4),4) |type=hidden |default=1 }} {{calculator |id=cutoff_angular_sigdigits |formula=round(cutoff_angular/pow(10,cutoff_angular_unitlog10div3floor*3),3) |type=hidden |default=1 }} {{calculator |id=cutoff_ordinal_unitlog10div3floor |formula=min(max(floor(log10(cutoff_ordinal)/3),-4),4) |type=hidden |default=1 }} {{calculator |id=cutoff_ordinal_sigdigits |formula=round(cutoff_ordinal/pow(10,cutoff_ordinal_unitlog10div3floor*3),3) |type=hidden |default=1 }} For instance, {{nowrap|{{calculator|id=resistance_number|type=number|min=1|size=3|default=1|max=999|step=.1}} {{calculator|id=resistance_unitlog10|type=select|class=cdx-select|mapping={ "teraohms":12, "gigaohms":9, "megaohms":6, "kiloohms":3, "ohms":0, "milliohms":-3 }|style=min-width:1ch|value=6}}}} of resistance with {{nowrap|{{calculator|id=capacitance_number|type=number|min=1|size=3|default=1|max=999|step=.1}} {{calculator|id=capacitance_unitlog10|type=select|class=cdx-select|mapping={ "farads":0, "millifarads":-3, "microfarads":-6, "nanofarads":-9, "picofarads":-12}|style=min-width:1ch|value=-6}}}} of capacitance produces a time constant of approximately {{nowrap|{{calculator |id=tau_sigdigits_label |type=plain |size=4 |NaN-text=? |formula=tau_sigdigits |default=1 }} {{calculator |id=tau_unit |formula=tau_unitlog10div3floor |type=plain |default=seconds |mapping={ "[unknown time unit]": "default", "petaseconds": 5, "teraseconds": 4, "gigaseconds": 3, "megaseconds": 2, "kiloseconds": 1, "seconds": 0, "milliseconds": -1, "microseconds": -2, "nanoseconds": -3, "picoseconds": -4, "femtoseconds": -5 } }}.}} This {{Mvar|τ}} corresponds to a [[cutoff frequency]] of approximately {{nowrap|{{calculator |id=cutoff_ordinal_sigdigits_label |type=plain |size=4 |NaN-text=? |formula=cutoff_ordinal_sigdigits |default=159 }} {{calculator |id=cutoff_ordinal_unit |formula=cutoff_ordinal_unitlog10div3floor |type=plain |default=millihertz |mapping={ "[unknown frequency unit]":"default", "terahertz":4, "gigahertz":3, "megahertz":2, "kilohertz":1, "hertz":0, "millihertz":-1, "microhertz":-2, "nanohertz":-3, "picohertz":-4} }}}} or {{nowrap|{{calculator |id=cutoff_angular_sigdigits_label |type=plain |size=4 |NaN-text=? |formula=cutoff_angular_sigdigits |default=1 }} {{calculator |id=cutoff_angular_unit |formula=cutoff_angular_unitlog10div3floor |type=plain |default=radians per second |mapping={ "[unknown frequency unit]":"default", "teraradians per second":4, "gigaradians per second":3, "megaradians per second":2, "kiloradians per second":1, "radians per second":0, "milliradians per second":-1, "microradians per second":-2, "nanoradians per second":-3, "picoradians per second":-4} }}.}} If the capacitor has an initial voltage {{Math|''V''<sub>0</sub>}} of {{nowrap|{{calculator |id=initialvoltage_number |type=number |min=-999 |size=3 |default=1 |max=999 |step=.1 }} {{calculator |id=initialvoltage_unitlog10 |type=select |class=cdx-select |mapping={ "teravolts":12, "gigavolts":9, "megavolts":6, "kilovolts":3, "volts":0, "millivolts":-3, "microvolts":-6, "nanovolts":-9, "picovolts":-12} |style=min-width:1ch |value=0 }}}}, then after {{nowrap|{{calculator |id=decaytime_in_tau |default=1 |type=number |size=5 |step=.1 |min=0 }} {{Mvar|τ}}}} (approximately {{nowrap|{{calculator |id=decaytime_sigdigits_label |type=plain |size=4 |NaN-text=? |formula=decaytime_sigdigits |default=1 }} {{calculator |id=decaytime_unit |formula=decaytime_unitlog10div3floor |type=plain |default=seconds |mapping={ "[unknown time unit]": "default", "petaseconds": 5, "teraseconds": 4, "gigaseconds": 3, "megaseconds": 2, "kiloseconds": 1, "seconds": 0, "milliseconds": -1, "microseconds": -2, "nanoseconds": -3, "picoseconds": -4, "femtoseconds": -5 } }}}} or {{nowrap|{{calculator |id=decaytime_in_halflives |type=plain |size=4 |NaN-text=? |formula=round(decaytime_in_tau/log(2),3) |default=1.443 }} [[half-lives]]),}} the capacitor's voltage will discharge to approximately {{nowrap|{{calculator |id=finalvoltage_sigdigits_label |type=plain |size=4 |NaN-text=? |formula=finalvoltage_sigdigits |default=368 }} {{calculator |id=finalvoltage_unit |formula=finalvoltage_unitlog10div3floor |type=plain |default=millivolts |mapping={ "[unknown voltage unit]": "default", "petavolts": 5, "teravolts": 4, "gigavolts": 3, "megavolts": 2, "kilovolts": 1, "volts": 0, "millivolts": -1, "microvolts": -2, "nanovolts": -3, "picovolts": -4, "femtovolts": -5 } }}:}} <div class="floatnone noresize" style="position: relative; width: 900px; height: 550px;"> [[File:Series_RC_resistor_voltage_relabeled.svg|alt=|frameless|720x500px|class=skin-invert-image]] <div style="position: absolute; left: calc( var( --calculator-xpix, 200)*1px ); top: calc( var( --calculator-ypix, 286.6)*1px ); padding: 0;">[[Image:Blue pog.svg|10px|link=|alt=|class=|]]</div> <div style="position: absolute; left: calc( (var( --calculator-xpix, 200) + 10)*1px); top: calc( (var( --calculator-ypix, 286.6) - 10)*1px ); padding: 0; background-color: white; border: 3px solid blue; color: blue"> {{Math|''V''<sub>C</sub>}}({{calculator|id=decaytime_in_tau_label|default=1|type=plain|formula=round(decaytime_in_tau,1)}}''τ'') ≈ {{calculator|default=36.8|type=plain|formula=percent_of_initialvoltage}}% of {{Math|''V''<sub>0</sub>}} </div> </div> ==Delay== The signal delay of a wire or other circuit, measured as [[group delay]] or [[phase delay]] or the effective propagation delay of a [[Digital data|digital]] transition, may be dominated by resistive-capacitive effects, depending on the distance and other parameters, or may alternatively be dominated by [[inductance|inductive]], wave, and [[speed of light]] effects in other realms. Resistive-capacitive delay (RC delay) hinders [[microelectronics|microelectronic]] [[integrated circuit]] (IC) speed improvements. As semiconductor [[Semiconductor device fabrication#Feature size|feature size]] becomes smaller and smaller to increase the [[clock rate]], the RC delay plays an increasingly important role. This delay can be reduced by replacing the [[aluminum]] conducting wire by [[copper]] to reduce resistance or by changing the interlayer [[dielectric]] (typically [[silicon dioxide]]) to low-dielectric-constant materials to reduce capacitance. The typical digital propagation delay of a resistive wire is about half of R times C; since both R and C are proportional to wire length, the delay scales as the square of wire length. Charge spreads by [[diffusion]] in such a wire, as explained by [[Lord Kelvin]] in the mid-nineteenth century.<ref>{{cite book | title = Lord Kelvin | author = Andrew Gray | publisher = Dent | year = 1908 | url = https://archive.org/details/lordkelvinanacc01graygoog | page = [https://archive.org/details/lordkelvinanacc01graygoog/page/n291 265] }}</ref> Until [[Heaviside]] discovered that [[Maxwell's equations]] imply wave propagation when sufficient inductance is in the circuit, this square diffusion relationship was thought to provide a fundamental limit to the improvement of long-distance telegraph cables. That old analysis was superseded in the telegraph domain, but remains relevant for long on-chip interconnects.<ref>{{cite book | title = From Obscurity to Enigma | author = Ido Yavetz | publisher = Birkhäuser | year = 1995 | isbn = 3-7643-5180-2 | url = https://books.google.com/books?id=SQszfj7biVMC&dq=preece+heaviside+telegraph+square&pg=PA245 }}</ref><ref>{{cite book | title = Interconnect-centric Design for Advanced SoC and NoC |author1=Jari Nurmi |author2=Hannu Tenhunen |author3=Jouni Isoaho |author4=Axel Jantsch |name-list-style=amp | publisher = Springer | year = 2004 | isbn = 1-4020-7835-8 | url = https://books.google.com/books?id=Uj7RvVE2Ln0C&dq=vlsi+rc+delay+distributed+diffusion&pg=PA59 }}</ref><ref>{{cite book | title = An Analog Electronics Companion | author = Scott Hamilton | publisher = Cambridge University Press | year = 2007 | isbn = 978-0-521-68780-5 | url = https://books.google.com/books?id=2BntAEtXsBMC&dq=preece+distributed+heaviside+diffusion+thomson&pg=PA580 }}</ref> ==See also== * [[Cutoff frequency]] and [[frequency response]] * [[Emphasis (telecommunications)|Emphasis]], [[preemphasis]], [[deemphasis]] * [[Exponential decay]] * [[Filter (signal processing)]] and [[transfer function]] * [[High-pass filter]], [[low-pass filter]], [[band-pass filter]] * [[RL circuit]], and [[RLC circuit]] * [[Rise time]] ==References== <references/> ==External links== *[http://www.referencedesigner.com/rfcal/cal_05.php RC Time Constant Calculator] *[http://www.sengpielaudio.com/calculator-timeconstant.htm Conversion time constant <math>\tau</math> to cutoff frequency f<sub>c</sub> and back] *[http://www.tpub.com/neets/book2/3d.htm RC time constant] *[https://www.researchgate.net/publication/391861381_Low-Complexity_Autonomous_RC_Time_Constant_Calibration_for_Accuracy_Improvement_of_CMOS_Integrated_Analog_Frequency_Filters#fullTextFileContent Calibration of RC time constant in CMOS IC analog filters] [[Category:Analog circuits]] [[Category:Time]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Calculator
(
edit
)
Template:Cite book
(
edit
)
Template:Math
(
edit
)
Template:Mvar
(
edit
)
Template:Nowrap
(
edit
)
Template:Short description
(
edit
)