Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Radix
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Number of digits of a numeral system}} {{other uses}} {{Numeral systems|expand=Place-value notation|expand2=By radix/base}} In a [[positional numeral system]], the '''radix''' ({{plural form}}{{nbs}}'''radices''') or '''base''' is the number of unique [[numerical digit|digits]], including the digit zero, used to represent numbers. For example, for the [[decimal|decimal system]] (the most common system in use today) the radix is ten, because it uses the ten digits from 0 through 9. In any standard positional numeral system, a number is conventionally written as {{nowrap|(''x'')<sub>''y''</sub>}} with ''x'' as the [[String (computer science)|string]] of digits and ''y'' as its base. For base ten, the subscript is usually assumed and omitted (together with the enclosing [[parentheses]]), as it is the most common way to express [[value (mathematics)|value]]. For example, <span class="nowrap">(100)<sub>10</sub> is equivalent to 100</span> (the decimal system is implied in the latter) and represents the number one hundred, while (100)<sub>2</sub> (in the [[binary system (numeral)|binary system]] with base 2) represents the number four.<ref name="morris_mano_p13_14"/> == Etymology == [[:wikt:radix|''Radix'']] is a Latin word for "root". ''Root'' can be considered a synonym for ''base,'' in the arithmetical sense. == In numeral systems == Generally, in a system with radix ''b'' ({{nowrap|''b'' > 1}}), a string of digits {{nowrap|''d''<sub>1</sub> ... ''d<sub>n</sub>''}} denotes the number {{nowrap|''d''<sub>1</sub>''b''<sup>''n''β1</sup> + ''d''<sub>2</sub>''b''<sup>''n''β2</sup> + ... + ''d<sub>n</sub>b''<sup>0</sup>}}, where {{nowrap|0 β€ ''d<sub>i</sub>'' < ''b''}}.<ref name="morris_mano_p13_14"> {{cite book | first1=M. Morris | last1=Mano | first2=Charles | last2=Kime | title=Logic and Computer Design Fundamentals | date=2014 | publisher=Pearson | location=Harlow | isbn=978-1-292-02468-4 | pages=13β14 | edition=4th }}</ref> In contrast to decimal, or radix 10, which has a ones' place, tens' place, hundreds' place, and so on, radix ''b'' would have a ones' place, then a ''b''<sup>1</sup>s' place, a ''b''<sup>2</sup>s' place, etc.<ref>{{Cite web|url=https://experimonkey.com/facts/computer-science/binary|title=Binary|website=experimonkey.com|access-date=2023-05-14}}</ref> For example, if ''b'' = 12, a string of digits such as 59A (where the letter "A" represents the value of ten) would represent the value {{nowrap|''5'' Γ ''12''<sup>''2''</sup> + ''9'' Γ ''12''<sup>''1''</sup> + ''10'' Γ ''12''<sup>''0''</sup>}} = 838 in base 10. Commonly used numeral systems include: {| class="wikitable sortable" ! Base/radix ! Name ! Description |- | 2 | [[Binary numeral system]] | Used internally by nearly all [[computer]]s. The two digits are "0" and "1", expressed from switches displaying OFF and ON, respectively. Used in most electric [[counter (digital)|counter]]s. |- | 8 | [[Octal|Octal system]] | Used occasionally in computing. The eight digits are "0"β"7" and represent 3 bits (2<sup>3</sup>). |- | 10 | [[Decimal|Decimal system]] | Used by humans in the wide majority of cultures. Its ten digits are "0"β"9". Used in most [[mechanical counter]]s. |- | 12 | [[Duodecimal|Duodecimal (dozenal) system]] | Sometimes advocated due to divisibility by 2, 3, 4, and 6. It was traditionally used as part of quantities expressed in [[dozen]]s and [[gross (unit)|grosses]]. |- | 16 | [[Hexadecimal|Hexadecimal system]] | Often used in computing as a more compact representation of binary (1 hex digit per 4 bits). The sixteen digits are "0"β"9" followed by "A"β"F" or "a"β"f". |- | 20 | [[Vigesimal|Vigesimal system]] | Traditional numeral system in several cultures, still used by some for counting. Historically also known as the ''[[score (number)|score]] system'' in English, now most famous in the phrase "four score and seven years ago" in the [[Gettysburg Address]]. |- |36 |[[Base36]] |'''Base36''' is a [[binary-to-text encoding]] scheme that represents [[binary data]] in an [[ASCII]] string format by translating it into a radix-36 representation. The choice of 36 is convenient in that the digits can be represented using the [[Arabic numerals]] 0β9 and the [[Latin alphabet|Latin letters]] AβZ (the [[ISO basic Latin alphabet]]). Each base36 digit needs less than 6 bits of information to be represented. |- | 60 | [[Sexagesimal|Sexagesimal system]] | Originally used in modified form in ancient [[Sumer]] and passed to the [[Babylonia]]ns.<ref> {{cite book | last1=Bertman | first1=Stephen | title=Handbook to Life in Ancient Mesopotamia | date=2005|publisher=Oxford Univ. Press | location=Oxford [u.a.] | isbn=978-019-518364-1 | page=257 | edition=Paperback | url=https://books.google.com/books?id=1C4NKp4zgIQC&pg=PA257 }}</ref> Used today as the basis of modern [[minute of arc#Symbols and abbreviations|circular coordinate system]] (degrees, minutes, and seconds) and [[time]] measuring (minutes, and seconds) by analogy to the rotation of the Earth. |} {{for|a larger list|List of numeral systems}} The octal and hexadecimal systems are often used in computing because of their ease as shorthand for binary. Every hexadecimal digit corresponds to a sequence of four binary digits, since sixteen is the fourth power of two; for example, hexadecimal 78<sub>16</sub> is binary {{gaps|111|1000}}<sub>2</sub>. Similarly, every octal digit corresponds to a unique sequence of three binary digits, since eight is the cube of two. This representation is unique. Let ''b'' be a positive integer greater than 1. Then every positive integer ''a'' can be expressed uniquely in the form :<math>a = r_m b^m + r_{m-1} b^{m-1} + \dotsb + r_1 b + r_0,</math> where ''m'' is a nonnegative integer and the ''r'''s are integers such that :0 < ''r''<sub>''m''</sub> < ''b'' and 0 β€ ''r''<sub>''i''</sub> < ''b'' for ''i'' = 0, 1, ... , ''m'' β 1.<ref>{{harvtxt|McCoy|1968|p=75}}</ref> Radices are usually [[natural number]]s. However, other positional systems are possible, for example, [[golden ratio base]] (whose radix is a non-integer [[algebraic number]]),<ref> {{cite journal | doi=10.2307/3029218 | last=Bergman | first=George | title=A Number System with an Irrational Base | journal=Mathematics Magazine | volume=31 | issue=2 | pages=98β110 | year=1957 | jstor=3029218 }}</ref> and [[negative base]] (whose radix is negative).<ref> {{cite journal | author1=William J. Gilbert | title=Negative Based Number Systems | journal=Mathematics Magazine | date=September 1979 | volume=52 | issue=4 | pages=240β244 | url=https://www.math.uwaterloo.ca/~wgilbert/Research/GilbertNegBases.pdf|access-date=7 February 2015 | doi=10.1080/0025570X.1979.11976792 }}</ref> A negative base allows the representation of negative numbers without the use of a minus sign. For example, let ''b'' = β10. Then a string of digits such as 19 denotes the (decimal) number {{nowrap|1 Γ (β10)<sup>1</sup> + 9 Γ (β10)<sup>0</sup>}} = β1. == Table of bases == Different bases are especially used in connection with computers. The commonly used bases are 10 ([[decimal]]), 2 ([[Binary number|binary]]), 8 ([[octal]]), and 16 ([[hexadecimal]]). A [[byte]] with 8 [[bit]]s can represent values from 0 to 255, often expressed with [[leading zero]]s in base 2, 8 or 16 to give the same length.<ref>{{cite web |title=Conversion Table β Decimal, Hexidecimal, Octol, Binary |url=https://www.securitywizardry.com/packets/pdf/Conversion_Table.pdf |website=SecurityWizardry.com |accessdate=7 April 2025}}</ref> The first row in the tables is the base written in decimal. <div style=display:inline-grid> {| class="wikitable" |+ 0β15 ! 10 !! 2 !! 8 !! 16 |- !0 |00000000||000||00 |- !1 |00000001||001||01 |- !2 |00000010||002||02 |- !3 |00000011||003||03 |- !4 |00000100||004||04 |- !5 |00000101||005||05 |- !6 |00000110||006||06 |- !7 |00000111||007||07 |- !8 |00001000||010||08 |- !9 |00001001||011||09 |- !10 |00001010||012||0a |- !11 |00001011||013||0b |- !12 |00001100||014||0c |- !13 |00001101||015||0d |- !14 |00001110||016||0e |- !15 |00001111||017||0f |} </div> <div style=display:inline-grid> {| class="wikitable" |+ 16β31 ! 10 !! 2 !! 8 !! 16 |- !16 |00010000||020||10 |- !17 |00010001||021||11 |- !18 |00010010||022||12 |- !19 |00010011||023||13 |- !20 |00010100||024||14 |- !21 |00010101||025||15 |- !22 |00010110||026||16 |- !23 |00010111||027||17 |- !24 |00011000||030||18 |- !25 |00011001||031||19 |- !26 |00011010||032||1a |- !27 |00011011||033||1b |- !28 |00011100||034||1c |- !29 |00011101||035||1d |- !30 |00011110||036||1e |- !31 |00011111||037||1f |} </div> <div style=display:inline-grid> {| class="wikitable" |+ 32β47 ! 10 !! 2 !! 8 !! 16 |- !32 |00100000||040||20 |- !33 |00100001||041||21 |- !34 |00100010||042||22 |- !35 |00100011||043||23 |- !36 |00100100||044||24 |- !37 |00100101||045||25 |- !38 |00100110||046||26 |- !39 |00100111||047||27 |- !40 |00101000||050||28 |- !41 |00101001||051||29 |- !42 |00101010||052||2a |- !43 |00101011||053||2b |- !44 |00101100||054||2c |- !45 |00101101||055||2d |- !46 |00101110||056||2e |- !47 |00101111||057||2f |} </div> <div style=display:inline-grid> {| class="wikitable" |+ 48β63 ! 10 !! 2 !! 8 !! 16 |- !48 |00110000||060||30 |- !49 |00110001||061||31 |- !50 |00110010||062||32 |- !51 |00110011||063||33 |- !52 |00110100||064||34 |- !53 |00110101||065||35 |- !54 |00110110||066||36 |- !55 |00110111||067||37 |- !56 |00111000||070||38 |- !57 |00111001||071||39 |- !58 |00111010||072||3a |- !59 |00111011||073||3b |- !60 |00111100||074||3c |- !61 |00111101||075||3d |- !62 |00111110||076||3e |- !63 |00111111||077||3f |} </div> <div style=display:inline-grid> {| class="wikitable" |+ 64β79 ! 10 !! 2 !! 8 !! 16 |- !64 |01000000||100||40 |- !65 |01000001||101||41 |- !66 |01000010||102||42 |- !67 |01000011||103||43 |- !68 |01000100||104||44 |- !69 |01000101||105||45 |- !70 |01000110||106||46 |- !71 |01000111||107||47 |- !72 |01001000||110||48 |- !73 |01001001||111||49 |- !74 |01001010||112||4a |- !75 |01001011||113||4b |- !76 |01001100||114||4c |- !77 |01001101||115||4d |- !78 |01001110||116||4e |- !79 |01001111||117||4f |} </div> <div style=display:inline-grid> {| class="wikitable" |+ 80β95 ! 10 !! 2 !! 8 !! 16 |- !80 |01010000||120||50 |- !81 |01010001||121||51 |- !82 |01010010||122||52 |- !83 |01010011||123||53 |- !84 |01010100||124||54 |- !85 |01010101||125||55 |- !86 |01010110||126||56 |- !87 |01010111||127||57 |- !88 |01011000||130||58 |- !89 |01011001||131||59 |- !90 |01011010||132||5a |- !91 |01011011||133||5b |- !92 |01011100||134||5c |- !93 |01011101||135||5d |- !94 |01011110||136||5e |- !95 |01011111||137||5f |} </div> <div style=display:inline-grid> {| class="wikitable" |+ 96β111 ! 10 !! 2 !! 8 !! 16 |- !96 |01100000||140||60 |- !97 |01100001||141||61 |- !98 |01100010||142||62 |- !99 |01100011||143||63 |- !100 |01100100||144||64 |- !101 |01100101||145||65 |- !102 |01100110||146||66 |- !103 |01100111||147||67 |- !104 |01101000||150||68 |- !105 |01101001||151||69 |- !106 |01101010||152||6a |- !107 |01101011||153||6b |- !108 |01101100||154||6c |- !109 |01101101||155||6d |- !110 |01101110||156||6e |- !111 |01101111||157||6f |} </div> <div style=display:inline-grid> {| class="wikitable" |+ 112β127 ! 10 !! 2 !! 8 !! 16 |- !112 |01110000||160||70 |- !113 |01110001||161||71 |- !114 |01110010||162||72 |- !115 |01110011||163||73 |- !116 |01110100||164||74 |- !117 |01110101||165||75 |- !118 |01110110||166||76 |- !119 |01110111||167||77 |- !120 |01111000||170||78 |- !121 |01111001||171||79 |- !122 |01111010||172||7a |- !123 |01111011||173||7b |- !124 |01111100||174||7c |- !125 |01111101||175||7d |- !126 |01111110||176||7e |- !127 |01111111||177||7f |} </div> <div style=display:inline-grid> {| class="wikitable" |+ 128β143 ! 10 !! 2 !! 8 !! 16 |- !128 |10000000||200||80 |- !129 |10000001||201||81 |- !130 |10000010||202||82 |- !131 |10000011||203||83 |- !132 |10000100||204||84 |- !133 |10000101||205||85 |- !134 |10000110||206||86 |- !135 |10000111||207||87 |- !136 |10001000||210||88 |- !137 |10001001||211||89 |- !138 |10001010||212||8a |- !139 |10001011||213||8b |- !140 |10001100||214||8c |- !141 |10001101||215||8d |- !142 |10001110||216||8e |- !143 |10001111||217||8f |} </div> <div style=display:inline-grid> {| class="wikitable" |+ 144β159 ! 10 !! 2 !! 8 !! 16 |- !144 |10010000||220||90 |- !145 |10010001||221||91 |- !146 |10010010||222||92 |- !147 |10010011||223||93 |- !148 |10010100||224||94 |- !149 |10010101||225||95 |- !150 |10010110||226||96 |- !151 |10010111||227||97 |- !152 |10011000||230||98 |- !153 |10011001||231||99 |- !154 |10011010||232||9a |- !155 |10011011||233||9b |- !156 |10011100||234||9c |- !157 |10011101||235||9d |- !158 |10011110||236||9e |- !159 |10011111||237||9f |} </div> <div style=display:inline-grid> {| class="wikitable" |+ 160β175 ! 10 !! 2 !! 8 !! 16 |- !160 |10100000||240||a0 |- !161 |10100001||241||a1 |- !162 |10100010||242||a2 |- !163 |10100011||243||a3 |- !164 |10100100||244||a4 |- !165 |10100101||245||a5 |- !166 |10100110||246||a6 |- !167 |10100111||247||a7 |- !168 |10101000||250||a8 |- !169 |10101001||251||a9 |- !170 |10101010||252||aa |- !171 |10101011||253||ab |- !172 |10101100||254||ac |- !173 |10101101||255||ad |- !174 |10101110||256||ae |- !175 |10101111||257||af |} </div> <div style=display:inline-grid> {| class="wikitable" |+ 176β191 ! 10 !! 2 !! 8 !! 16 |- !176 |10110000||260||b0 |- !177 |10110001||261||b1 |- !178 |10110010||262||b2 |- !179 |10110011||263||b3 |- !180 |10110100||264||b4 |- !181 |10110101||265||b5 |- !182 |10110110||266||b6 |- !183 |10110111||267||b7 |- !184 |10111000||270||b8 |- !185 |10111001||271||b9 |- !186 |10111010||272||ba |- !187 |10111011||273||bb |- !188 |10111100||274||bc |- !189 |10111101||275||bd |- !190 |10111110||276||be |- !191 |10111111||277||bf |} </div> <div style=display:inline-grid> {| class="wikitable" |+ 192β207 ! 10 !! 2 !! 8 !! 16 |- !192 |11000000||300||c0 |- !193 |11000001||301||c1 |- !194 |11000010||302||c2 |- !195 |11000011||303||c3 |- !196 |11000100||304||c4 |- !197 |11000101||305||c5 |- !198 |11000110||306||c6 |- !199 |11000111||307||c7 |- !200 |11001000||310||c8 |- !201 |11001001||311||c9 |- !202 |11001010||312||ca |- !203 |11001011||313||cb |- !204 |11001100||314||cc |- !205 |11001101||315||cd |- !206 |11001110||316||ce |- !207 |11001111||317||cf |} </div> <div style=display:inline-grid> {| class="wikitable" |+ 208β223 ! 10 !! 2 !! 8 !! 16 |- !208 |11010000||320||d0 |- !209 |11010001||321||d1 |- !210 |11010010||322||d2 |- !211 |11010011||323||d3 |- !212 |11010100||324||d4 |- !213 |11010101||325||d5 |- !214 |11010110||326||d6 |- !215 |11010111||327||d7 |- !216 |11011000||330||d8 |- !217 |11011001||331||d9 |- !218 |11011010||332||da |- !219 |11011011||333||db |- !220 |11011100||334||dc |- !221 |11011101||335||dd |- !222 |11011110||336||de |- !223 |11011111||337||df |} </div> <div style=display:inline-grid> {| class="wikitable" |+ 224β239 ! 10 !! 2 !! 8 !! 16 |- !224 |11100000||340||e0 |- !225 |11100001||341||e1 |- !226 |11100010||342||e2 |- !227 |11100011||343||e3 |- !228 |11100100||344||e4 |- !229 |11100101||345||e5 |- !230 |11100110||346||e6 |- !231 |11100111||347||e7 |- !232 |11101000||350||e8 |- !233 |11101001||351||e9 |- !234 |11101010||352||ea |- !235 |11101011||353||eb |- !236 |11101100||354||ec |- !237 |11101101||355||ed |- !238 |11101110||356||ee |- !239 |11101111||357||ef |} </div> <div style=display:inline-grid> {| class="wikitable" |+ 240β255 ! 10 !! 2 !! 8 !! 16 |- !240 |11110000||360||f0 |- !241 |11110001||361||f1 |- !242 |11110010||362||f2 |- !243 |11110011||363||f3 |- !244 |11110100||364||f4 |- !245 |11110101||365||f5 |- !246 |11110110||366||f6 |- !247 |11110111||367||f7 |- !248 |11111000||370||f8 |- !249 |11111001||371||f9 |- !250 |11111010||372||fa |- !251 |11111011||373||fb |- !252 |11111100||374||fc |- !253 |11111101||375||fd |- !254 |11111110||376||fe |- !255 |11111111||377||ff |} </div> ==See also== * [[Floating-point arithmetic]] * [[Mixed radix]] * [[Polynomial]] * [[Radix economy]] * [[Radix sort]] * [[Non-standard positional numeral systems]] * [[List of numeral systems]] == Notes == {{reflist|30em}} == References == * {{ citation | last1 = McCoy | first1 = Neal H. | title = Introduction To Modern Algebra, Revised Edition | location = Boston | publisher = [[Allyn and Bacon]] | year = 1968 | lccn = 68015225 }} ==External links== {{wiktionary|radix}} * [http://mathworld.wolfram.com/Base.html MathWorld entry on base] [[Category:Elementary mathematics]] [[Category:Numeral systems]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Citation
(
edit
)
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite web
(
edit
)
Template:For
(
edit
)
Template:Gaps
(
edit
)
Template:Harvtxt
(
edit
)
Template:Nbs
(
edit
)
Template:Nowrap
(
edit
)
Template:Numeral systems
(
edit
)
Template:Other uses
(
edit
)
Template:Plural form
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)
Template:Sidebar with collapsible groups
(
edit
)
Template:Sister project
(
edit
)
Template:Wiktionary
(
edit
)