Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Ramanujan tau function
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Function studied by Ramanujan}} [[Image:Absolute Tau function for x up to 16,000 with logarithmic scale.JPG|thumbnail|upright=1.64|Values of <math>|\tau(n)|</math> for <math>n<16,000</math> with a logarithmic scale. The blue line picks only the values of <math>n</math> that are multiples of 121.]] The '''Ramanujan tau function''', studied by {{harvs|txt|authorlink=Srinivasa Ramanujan|last=Ramanujan|year=1916}}, is the function <math>\tau : \mathbb{N}\to\mathbb{Z}</math> defined by the following identity: :<math>\sum_{n\geq 1}\tau(n)q^n=q\prod_{n\geq 1}\left(1-q^n\right)^{24} = q\phi(q)^{24} = \eta(z)^{24}=\Delta(z),</math> where <math>q=\exp(2\pi iz)</math> with <math>\mathrm{Im}(z)>0</math>, <math>\phi</math> is the [[Euler function]], <math>\eta</math> is the [[Dedekind eta function]], and the function <math>\Delta(z)</math> is a [[Holomorphic function|holomorphic]] [[cusp form]] of weight 12 and level 1, known as the [[Modular discriminant|discriminant modular form]] (some authors, notably [[Tom M. Apostol|Apostol]], write <math>\Delta/(2\pi)^{12}</math> instead of <math>\Delta</math>). It appears in connection to an "error term" involved in counting the number of ways of expressing an integer as a sum of 24 squares. A formula due to [[Ian G. Macdonald]] was given in {{harvtxt|Dyson|1972}}. ==Values== The first few values of the tau function are given in the following table {{OEIS|id=A000594}}: {| class="wikitable" style="text-align:center" |- ! <math>n</math> |1||2||3||4||5||6||7||8||9||10||11||12||13||14||15||16 |- ! <math>\tau(n)</math> |1||−24||252||−1472||4830||−6048||−16744||84480||−113643||−115920||534612||−370944||−577738||401856||1217160||987136 |} Calculating this function on an odd square number (i.e. a [[centered octagonal number]]) yields an odd number, whereas for any other number the function yields an even number.<ref>{{Cite OEIS|A016754|name=Odd squares: (2n-1)^2. Also centered octagonal numbers.}}</ref> ==Ramanujan's conjectures== {{harvtxt|Ramanujan|1916}} observed, but did not prove, the following three properties of <math>\tau(n)</math>: * <math>\tau(mn)=\tau(m)\tau(n)</math> if <math>\gcd(m,n)=1</math> (meaning that <math>\tau(n)</math> is a [[multiplicative function]]) * <math>\tau(p^{r+1})=\tau(p)\tau(p^r)-p^{11}\tau(p^{r-1})</math> for <math>p</math> prime and <math>r>0</math>. * <math>|\tau(p)|\leq 2p^{11/2}</math> for all [[prime number|primes]] <math>p</math>. The first two properties were proved by {{harvtxt|Mordell|1917}} and the third one, called the [[Ramanujan conjecture]], was proved by [[Deligne]] in 1974 as a consequence of his proof of the [[Weil conjectures]] (specifically, he deduced it by applying them to a Kuga-Sato variety). ==Congruences for the tau function== For <math>k\in\mathbb{Z}</math> and <math>n\in\mathbb{N}</math>, the [[Divisor function]] <math>\sigma_k(n)</math> is the sum of the <math>k</math>th powers of the divisors of <math>n</math>. The tau function satisfies several congruence relations; many of them can be expressed in terms of <math>\sigma_k(n)</math>. Here are some:<ref name=swd>Page 4 of {{harvnb|Swinnerton-Dyer|1973}}</ref> #<math>\tau(n)\equiv\sigma_{11}(n)\ \bmod\ 2^{11}\text{ for }n\equiv 1\ \bmod\ 8</math><ref name=kolberg>Due to {{harvnb|Kolberg|1962}}</ref> #<math>\tau(n)\equiv 1217 \sigma_{11}(n)\ \bmod\ 2^{13}\text{ for } n\equiv 3\ \bmod\ 8</math><ref name=kolberg/> #<math>\tau(n)\equiv 1537 \sigma_{11}(n)\ \bmod\ 2^{12}\text{ for }n\equiv 5\ \bmod\ 8</math><ref name=kolberg/> #<math>\tau(n)\equiv 705 \sigma_{11}(n)\ \bmod\ 2^{14}\text{ for }n\equiv 7\ \bmod\ 8</math><ref name=kolberg/> #<math>\tau(n)\equiv n^{-610}\sigma_{1231}(n)\ \bmod\ 3^{6}\text{ for }n\equiv 1\ \bmod\ 3</math><ref name=ashworth>Due to {{harvnb|Ashworth|1968}}</ref> #<math>\tau(n)\equiv n^{-610}\sigma_{1231}(n)\ \bmod\ 3^{7}\text{ for }n\equiv 2\ \bmod\ 3</math><ref name=ashworth/> #<math>\tau(n)\equiv n^{-30}\sigma_{71}(n)\ \bmod\ 5^{3}\text{ for }n\not\equiv 0\ \bmod\ 5</math><ref>Due to Lahivi</ref> #<math>\tau(n)\equiv n\sigma_{9}(n)\ \bmod\ 7</math><ref name=Lehmer>Due to D. H. Lehmer</ref> #<math>\tau(n)\equiv n\sigma_{9}(n)\ \bmod\ 7^2\text{ for }n\equiv 3,5,6\ \bmod\ 7</math><ref name=Lehmer/> #<math>\tau(n)\equiv\sigma_{11}(n)\ \bmod\ 691.</math><ref>Due to {{harvnb|Ramanujan|1916}}</ref> For <math>p\neq 23</math> prime, we have<ref name=swd/><ref>Due to {{harvnb|Wilton|1930}}</ref> <ol start=11> <li><math>\tau(p)\equiv 0\ \bmod\ 23\text{ if }\left(\frac{p}{23}\right)=-1</math> <li><math>\tau(p)\equiv \sigma_{11}(p)\ \bmod\ 23^2\text{ if } p\text{ is of the form } a^2+23b^2</math><ref>Due to J.-P. Serre 1968, Section 4.5</ref> <li><math>\tau(p)\equiv -1\ \bmod\ 23\text{ otherwise}.</math> </ol> == Explicit formula == In 1975 Douglas Niebur proved an explicit formula for the Ramanujan tau function:<ref>{{Cite journal |last=Niebur |first=Douglas |date=September 1975 |title=A formula for Ramanujan's <math>\tau</math>-function |journal=Illinois Journal of Mathematics |volume=19 |issue=3 |pages=448–449 |doi=10.1215/ijm/1256050746 |issn=0019-2082|doi-access=free }}</ref> :<math>\tau(n)=n^4\sigma(n)-24\sum_{i=1}^{n-1}i^2(35i^2-52in+18n^2)\sigma(i)\sigma(n-i).</math> where <math>\sigma(n)</math> is the [[Divisor function|sum of the positive divisors]] of <math>n</math>. ==Conjectures on the tau function== Suppose that <math>f</math> is a weight-<math>k</math> integer [[newform]] and the Fourier coefficients <math>a(n)</math> are integers. Consider the problem: : Given that <math>f</math> does not have [[complex multiplication]], do almost all primes <math>p</math> have the property that <math>a(p)\not\equiv 0\pmod{p}</math> ? Indeed, most primes should have this property, and hence they are called ''ordinary''. Despite the big advances by Deligne and Serre on Galois representations, which determine <math>a(n)\pmod{p}</math> for <math>n</math> coprime to <math>p</math>, it is unclear how to compute <math>a(p)\pmod{p}</math>. The only theorem in this regard is Elkies' famous result for modular elliptic curves, which guarantees that there are infinitely many primes <math>p</math> such that <math>a(p)=0</math>, which thus are congruent to 0 modulo <math>p</math>. There are no known examples of non-CM <math>f</math> with weight greater than 2 for which <math>a(p)\not\equiv 0\pmod{p}</math> for infinitely many primes <math>p</math> (although it should be true for almost all <math>p</math>. There are also no known examples with <math>a(p)\equiv 0 \pmod{p}</math> for infinitely many <math>p</math>. Some researchers had begun to doubt whether <math>a(p)\equiv 0 \pmod{p}</math> for infinitely many <math>p</math>. As evidence, many provided Ramanujan's <math>\tau(p)</math> (case of weight 12). The only solutions up to <math>10^{10}</math> to the equation <math>\tau(p)\equiv 0\pmod{p}</math> are 2, 3, 5, 7, 2411, and {{val|7758337633}} {{OEIS|A007659}}.<ref name=Lygeros>{{cite journal |author=N. Lygeros and O. Rozier |year=2010 |title=A new solution for the equation <math>\tau(p)\equiv 0 \pmod{p}</math> |journal=Journal of Integer Sequences |volume=13 |pages=Article 10.7.4 |url=https://cs.uwaterloo.ca/journals/JIS/VOL13/Lygeros/lygeros5.pdf}}</ref> {{harvtxt|Lehmer|1947}} conjectured that <math>\tau(n)\neq 0</math> for all <math>n</math>, an assertion sometimes known as Lehmer's conjecture. Lehmer verified the conjecture for <math>n</math> up to {{val|214928639999}} (Apostol 1997, p. 22). The following table summarizes progress on finding successively larger values of <math>N</math> for which this condition holds for all <math>n\leq N</math>. {| class="wikitable" |- ! <math>N</math> !! reference |- |align="right"| {{val|3316799}} || Lehmer (1947) |- |align="right"| {{val|214928639999}} || Lehmer (1949) |- |align="right"| {{val|1000000000000000}} || Serre (1973, p. 98), Serre (1985) |- |align="right"| {{val|1213229187071998}} || Jennings (1993) |- |align="right"| {{val|22689242781695999}} || Jordan and Kelly (1999) |- |align="right"| {{val|22798241520242687999}} || Bosman (2007) |- |align="right"| {{val|982149821766199295999}} || Zeng and Yin (2013) |- |align="right"| {{val|816212624008487344127999}} || Derickx, van Hoeij, and Zeng (2013) |} ==Ramanujan's L-function== '''Ramanujan's [[L-function|<math>L</math>-function]]''' is defined by :<math>L(s)=\sum_{n\ge 1}\frac{\tau (n)}{n^s}</math> if <math>\mathrm{Re}(s)>6</math> and by [[analytic continuation]] otherwise. It satisfies the functional equation :<math>\frac{L(s)\Gamma (s)}{(2\pi)^s}=\frac{L(12-s)\Gamma(12-s)}{(2\pi)^{12-s}},\quad s\notin\mathbb{Z}_0^-, \,12-s\notin\mathbb{Z}_0^{-}</math> and has the [[Euler product]] :<math>L(s)=\prod_{p\,\text{prime}}\frac{1}{1-\tau (p)p^{-s}+p^{11-2s}},\quad \mathrm{Re}(s)>7.</math> Ramanujan conjectured that all nontrivial zeros of <math>L</math> have real part equal to <math>6</math>. ==Notes== {{reflist|30em}} ==References== *{{Citation | last=Apostol | first=T. M. | authorlink=Tom M. Apostol | title=Modular Functions and Dirichlet Series in Number Theory | year=1997 | journal=New York: Springer-Verlag 2nd Ed. }} *{{Citation | last=Ashworth | first=M. H. | title=Congruence and identical properties of modular forms (D. Phil. Thesis, Oxford) | year=1968 }} *{{citation | last1=Dyson | first1=F. J. | author1-link=Freeman Dyson | title=Missed opportunities | zbl=0271.01005 | journal=Bull. Amer. Math. Soc. | volume=78 | issue=5 | pages=635–652 | year=1972 | doi=10.1090/S0002-9904-1972-12971-9| doi-access=free }} *{{Citation | last=Kolberg | first=O. | title=Congruences for Ramanujan's function τ(''n'') | journal=Arbok Univ. Bergen Mat.-Natur. Ser. | issue=11 | year=1962 | mr=0158873 | zbl=0168.29502 }} *{{citation | last1=Lehmer | first1=D.H. | author1-link=D. H. Lehmer | title=The vanishing of Ramanujan's function τ(n) | zbl=0029.34502 | journal=Duke Math. J. | volume=14 | pages=429–433 | year=1947 | issue=2 | doi=10.1215/s0012-7094-47-01436-1}} *{{Citation | last=Lygeros | first=N. | title=A New Solution to the Equation τ(p) ≡ 0 (mod p) | url=http://www.cs.uwaterloo.ca/journals/JIS/VOL13/Lygeros/lygeros5.pdf | year=2010 | journal=Journal of Integer Sequences | volume=13 | pages=Article 10.7.4 }} *{{Citation | last1=Mordell | first1=Louis J. | author1-link=Louis Mordell | title=On Mr. Ramanujan's empirical expansions of modular functions. | url=https://archive.org/stream/proceedingsofcam1920191721camb#page/n133 | jfm=46.0605.01 | year=1917 | journal=[[Proceedings of the Cambridge Philosophical Society]] | volume=19 | pages=117–124}} *{{Citation | last=Newman | first=M. | title=A table of τ (p) modulo p, p prime, 3 ≤ p ≤ 16067 | year=1972 | publisher=National Bureau of Standards }} *{{Citation | last1=Rankin | first1=Robert A. | editor1-last=Andrews | editor1-first=George E. | title=Ramanujan revisited (Urbana-Champaign, Ill., 1987) | url=https://books.google.com/books?id=GJUEAQAAIAAJ | publisher=[[Academic Press]] | location=Boston, MA | isbn=978-0-12-058560-1 | mr=938968 | year=1988 | chapter=Ramanujan's tau-function and its generalizations | pages=245–268}} *{{Citation | last=Ramanujan | first=Srinivasa | author-link=Srinivasa Ramanujan | title=On certain arithmetical functions | journal=Trans. Camb. Philos. Soc. | year=1916 | volume=22 | issue=9 | pages=159–184 | mr=2280861 }} *{{Citation | last=Serre | first=J-P. | title=Une interprétation des congruences relatives à la fonction <math>\tau</math> de Ramanujan | journal=Séminaire Delange-Pisot-Poitou | volume=14 | year=1968 | author-link=Jean-Pierre Serre | url = http://www.numdam.org/item?id=SDPP_1967-1968__9_1_A13_0 }} *{{Citation | last=Swinnerton-Dyer | first=H. P. F. | author-link=Peter Swinnerton-Dyer | title=Modular Functions of One Variable III | contribution=On ''l''-adic representations and congruences for coefficients of modular forms | year=1973 | isbn=978-3-540-06483-1 | series=Lecture Notes in Mathematics | volume=350 | mr=0406931 | pages=1–55 | doi=10.1007/978-3-540-37802-0 | editor1-last=Kuyk | editor1-first=Willem | editor2-last=Serre | editor2-first=Jean-Pierre | editor2-link=Jean-Pierre Serre }} *{{Citation | last=Wilton | first=J. R. | title=Congruence properties of Ramanujan's function τ(''n'') | year=1930 | journal=Proceedings of the London Mathematical Society | volume=31 | pages=1–10 | doi=10.1112/plms/s2-31.1.1 }} [[Category:Modular forms]] [[Category:Multiplicative functions]] [[Category:Srinivasa Ramanujan]] [[Category:Zeta and L-functions]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Citation
(
edit
)
Template:Cite OEIS
(
edit
)
Template:Cite journal
(
edit
)
Template:Harvnb
(
edit
)
Template:Harvs
(
edit
)
Template:Harvtxt
(
edit
)
Template:OEIS
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)
Template:Val
(
edit
)