Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Ramification group
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Filtration of the Galois group of a local field extension}} {{TOC right}} In [[number theory]], more specifically in [[local class field theory]], the '''ramification groups''' are a [[Filtration (mathematics)|filtration]] of the [[Galois group]] of a [[local field]] extension, which gives detailed information on the [[Ramification (mathematics)|ramification]] phenomena of the extension. ==Ramification theory of valuations== In [[mathematics]], the '''ramification theory of valuations''' studies the set of [[extension of a valuation|extensions]] of a [[valuation (algebra)|valuation]] ''v'' of a [[Field (mathematics)|field]] ''K'' to an [[field extension|extension]] ''L'' of ''K''. It is a generalization of the ramification theory of Dedekind domains.<ref>{{cite book | last1=Fröhlich | first1=A. | author1-link=Albrecht Fröhlich | last2=Taylor | first2= M.J. | author2-link=Martin J. Taylor | title=Algebraic number theory | series=Cambridge studies in advanced mathematics | volume=27 | publisher=[[Cambridge University Press]] | year=1991 | isbn=0-521-36664-X | zbl=0744.11001 }}</ref><ref>{{cite book | last=Zariski | first=Oscar | author-link=Oscar Zariski | last2=Samuel | first2=Pierre | author2-link=Pierre Samuel | title=Commutative algebra, Volume II | publisher=Springer-Verlag | location=New York, Heidelberg | series=[[Graduate Texts in Mathematics]] | volume=29 | year=1976 | origyear=1960 | isbn=978-0-387-90171-8 | zbl=0322.13001 | at=Chapter VI }}</ref> The structure of the set of extensions is known better when ''L''/''K'' is [[Galois extension|Galois]]. ===<span id="decomp"></span><span id="inertia"></span>Decomposition group and inertia group=== Let (''K'', ''v'') be a [[valued field]] and let ''L'' be a [[finite extension|finite]] [[Galois extension]] of ''K''. Let ''S<sub>v</sub>'' be the set of [[equivalence of valuations|equivalence]] [[equivalence class|classes]] of extensions of ''v'' to ''L'' and let ''G'' be the [[Galois group]] of ''L'' over ''K''. Then ''G'' acts on ''S<sub>v</sub>'' by σ[''w''] = [''w'' ∘ σ] (i.e. ''w'' is a [[representative (mathematics)|representative]] of the equivalence class [''w''] ∈ ''S<sub>v</sub>'' and [''w''] is sent to the equivalence class of the [[function composition|composition]] of ''w'' with the [[automorphism]] {{nowrap|σ : ''L'' → ''L''}}; this is independent of the choice of ''w'' in [''w'']). In fact, this action is [[transitive action|transitive]]. Given a fixed extension ''w'' of ''v'' to ''L'', the '''decomposition group of ''w''''' is the [[stabilizer subgroup]] ''G<sub>w</sub>'' of [''w''], i.e. it is the [[subgroup]] of ''G'' consisting of all elements that fix the equivalence class [''w''] ∈ ''S<sub>v</sub>''. Let ''m<sub>w</sub>'' denote the [[maximal ideal of a valuation|maximal ideal]] of ''w'' inside the [[valuation ring of a valuation|valuation ring]] ''R<sub>w</sub>'' of ''w''. The '''inertia group of ''w''''' is the subgroup ''I<sub>w</sub>'' of ''G<sub>w</sub>'' consisting of elements ''σ'' such that σ''x'' ≡ ''x'' (mod ''m<sub>w</sub>'') for all ''x'' in ''R<sub>w</sub>''. In other words, ''I<sub>w</sub>'' consists of the elements of the decomposition group that [[trivial action|act trivially]] on the [[residue field of a valuation|residue field]] of ''w''. It is a [[normal subgroup]] of ''G<sub>w</sub>''. The [[Reduced ramification index of an extension of valuations|reduced ramification index]] ''e''(''w''/''v'') is independent of ''w'' and is denoted ''e''(''v''). Similarly, the [[Relative degree of an extension of valuations|relative degree]] ''f''(''w''/''v'') is also independent of ''w'' and is denoted ''f''(''v''). == Ramification groups in lower numbering == Ramification groups are a refinement of the Galois group <math>G</math> of a finite <math>L/K</math> [[Galois extension]] of [[local field]]s. We shall write <math>w, \mathcal O_L, \mathfrak p</math> for the valuation, the ring of integers and its maximal ideal for <math>L</math>. As a consequence of [[Hensel's lemma]], one can write <math>\mathcal O_L = \mathcal O_K[\alpha]</math> for some <math>\alpha \in L</math> where <math>\mathcal O_K</math> is the ring of integers of <math>K</math>.<ref name=N178>Neukirch (1999) p.178</ref> (This is stronger than the [[primitive element theorem]].) Then, for each integer <math>i \ge -1</math>, we define <math>G_i</math> to be the set of all <math>s \in G</math> that satisfies the following equivalent conditions. *(i) <math>s</math> operates trivially on <math>\mathcal O_L / \mathfrak p^{i+1}.</math> *(ii) <math>w(s(x) - x) \ge i+1</math> for all <math>x \in \mathcal O_L</math> *(iii) <math>w(s(\alpha) - \alpha) \ge i+1.</math> The group <math>G_i</math> is called ''<math>i</math>-th ramification group''. They form a decreasing [[filtration (mathematics)|filtration]], :<math>G_{-1} = G \supset G_0 \supset G_1 \supset \dots \{*\}.</math> In fact, the <math>G_i</math> are normal by (i) and [[trivial group|trivial]] for sufficiently large <math>i</math> by (iii). For the lowest indices, it is customary to call <math>G_0</math> the [[inertia subgroup]] of <math>G</math> because of its relation to [[Splitting of prime ideals in Galois extensions|splitting of prime ideals]], while <math>G_1</math> the [[wild inertia subgroup]] of <math>G</math>. The quotient <math>G_0 / G_1</math> is called the tame quotient. The Galois group <math>G</math> and its subgroups <math>G_i</math> are studied by employing the above filtration or, more specifically, the corresponding quotients. In particular, *<math>G/G_0 = \operatorname{Gal}(l/k),</math> where <math>l, k</math> are the (finite) residue fields of <math>L, K</math>.<ref>since <math>G/G_0</math> is canonically isomorphic to the decomposition group.</ref> *<math>G_0 = 1 \Leftrightarrow L/K </math> is [[unramified extension|unramified]]. *<math>G_1 = 1 \Leftrightarrow L/K </math> is [[tamely ramified]] (i.e., the ramification index is prime to the residue characteristic.) The study of ramification groups reduces to the totally ramified case since one has <math>G_i = (G_0)_i</math> for <math>i \ge 0</math>. One also defines the function <math>i_G(s) = w(s(\alpha) - \alpha), s \in G</math>. (ii) in the above shows <math>i_G</math> is independent of choice of <math>\alpha</math> and, moreover, the study of the filtration <math>G_i</math> is essentially equivalent to that of <math>i_G</math>.<ref name=S7962>Serre (1979) p.62</ref> <math>i_G</math> satisfies the following: for <math>s, t \in G</math>, *<math>i_G(s) \ge i + 1 \Leftrightarrow s \in G_i.</math> *<math>i_G(t s t^{-1}) = i_G(s).</math> *<math>i_G(st) \ge \min\{ i_G(s), i_G(t) \}.</math> Fix a uniformizer <math>\pi</math> of <math>L</math>. Then <math>s \mapsto s(\pi)/\pi</math> induces the injection <math>G_i/G_{i+1} \to U_{L, i}/U_{L, i+1}, i \ge 0</math> where <math>U_{L, 0} = \mathcal{O}_L^\times, U_{L, i} = 1 + \mathfrak{p}^i</math>. (The map actually does not depend on the choice of the uniformizer.<ref>Conrad</ref>) It follows from this<ref>Use <math>U_{L, 0}/U_{L, 1} \simeq l^\times</math> and <math>U_{L, i}/U_{L, i+1} \approx l^+</math></ref> *<math>G_0/G_1</math> is cyclic of order prime to <math>p</math> *<math>G_i/G_{i+1}</math> is a product of cyclic groups of order <math>p</math>. In particular, <math>G_1</math> is a [[p-group|''p''-group]] and <math>G_0</math> is [[solvable group|solvable]]. The ramification groups can be used to compute the [[Different ideal|different]] <math>\mathfrak{D}_{L/K}</math> of the extension <math>L/K</math> and that of subextensions:<ref name=S64>Serre (1979) 4.1 Prop.4, p.64</ref> :<math>w(\mathfrak{D}_{L/K}) = \sum_{s \ne 1} i_G(s) = \sum_{i=0}^\infty (|G_i| - 1).</math> If <math>H</math> is a normal subgroup of <math>G</math>, then, for <math>\sigma \in G</math>, <math>i_{G/H}(\sigma) = {1 \over e_{L/K}} \sum_{s \mapsto \sigma} i_G(s)</math>.<ref name=S63>Serre (1979) 4.1. Prop.3, p.63</ref> Combining this with the above one obtains: for a subextension <math>F/K</math> corresponding to <math>H</math>, :<math>v_F(\mathfrak{D}_{F/K}) = {1 \over e_{L/F}} \sum_{s \not\in H} i_G(s).</math> If <math>s \in G_i, t \in G_j, i, j \ge 1</math>, then <math>sts^{-1}t^{-1} \in G_{i+j+1}</math>.<ref>Serre (1979) 4.2. Proposition 10.</ref> In the terminology of [[Michel Lazard|Lazard]], this can be understood to mean the [[Lie algebra]] <math>\operatorname{gr}(G_1) = \sum_{i \ge 1} G_i/G_{i+1}</math> is abelian. ===Example: the cyclotomic extension=== The ramification groups for a [[cyclotomic extension]] <math>K_n := \mathbf Q_p(\zeta)/\mathbf Q_p</math>, where <math>\zeta</math> is a <math>p^n</math>-th primitive [[root of unity]], can be described explicitly:<ref>Serre, ''Corps locaux''. Ch. IV, §4, Proposition 18</ref> :<math>G_s = \operatorname{Gal}(K_n / K_e),</math> where ''e'' is chosen such that <math>p^{e-1} \le s < p^e</math>. ===Example: a quartic extension=== Let ''K'' be the extension of {{math|'''Q'''<sub>2</sub>}} generated by <math>x_1=\sqrt{2+\sqrt{2}}</math>. The conjugates of <math>x_1</math> are <math> x_2 = \sqrt{2-\sqrt{2}}</math>, <math>x_3 = -x_1</math>, <math>x_4 = -x_2</math>. A little computation shows that the quotient of any two of these is a [[unit (ring theory)|unit]]. Hence they all generate the same ideal; call it {{pi}}. <math>\sqrt{2}</math> generates {{pi}}<sup>2</sup>; (2)={{pi}}<sup>4</sup>. Now <math>x_1-x_3=2x_1</math>, which is in {{pi}}<sup>5</sup>. and <math> x_1 - x_2 = \sqrt{4-2\sqrt{2}}, </math> which is in {{pi}}<sup>3</sup>. Various methods show that the Galois group of ''K'' is <math>C_4</math>, cyclic of order 4. Also: : <math>G_0 = G_1 = G_2 = C_4.</math> and <math>G_3 = G_4=(13)(24). </math> <math>w(\mathfrak{D}_{K/Q_2}) = 3+3+3+1+1 = 11,</math> so that the different <math>\mathfrak{D}_{K/Q_2} = \pi^{11} </math> <math>x_1</math> satisfies ''X''<sup>4</sup> − 4''X''<sup>2</sup> + 2, which has discriminant 2048 = 2<sup>11</sup>. == Ramification groups in upper numbering == If <math>u</math> is a real number <math>\ge -1</math>, let <math>G_u</math> denote <math>G_i</math> where ''i'' the least integer <math>\ge u</math>. In other words, <math>s \in G_u \Leftrightarrow i_G(s) \ge u+1.</math> Define <math>\phi</math> by<ref name=S67156>Serre (1967) p.156</ref> :<math>\phi(u) = \int_0^u {dt \over (G_0 : G_t)}</math> where, by convention, <math>(G_0 : G_t)</math> is equal to <math>(G_{-1} : G_0)^{-1}</math> if <math>t = -1</math> and is equal to <math>1</math> for <math>-1 < t \le 0</math>.<ref name=N179>Neukirch (1999) p.179</ref> Then <math>\phi(u) = u</math> for <math>-1 \le u \le 0</math>. It is immediate that <math>\phi</math> is continuous and strictly increasing, and thus has the continuous inverse function <math>\psi</math> defined on <math>[-1, \infty)</math>. Define <math>G^v = G_{\psi(v)}</math>. <math>G^v</math> is then called the '''''v''-th ramification group''' in upper numbering. In other words, <math>G^{\phi(u)} = G_u</math>. Note <math>G^{-1} = G, G^0 = G_0</math>. The upper numbering is defined so as to be compatible with passage to quotients:<ref name=S67155>Serre (1967) p.155</ref> if <math>H</math> is normal in <math>G</math>, then :<math>(G/H)^v = G^v H / H</math> for all <math>v</math> (whereas lower numbering is compatible with passage to subgroups.) ===Herbrand's theorem=== '''Herbrand's theorem''' states that the ramification groups in the lower numbering satisfy <math>G_u H/H = (G/H)_v</math> (for <math>v = \phi_{L/F}(u)</math> where <math>L/F</math> is the subextension corresponding to <math>H</math>), and that the ramification groups in the upper numbering satisfy <math>G^u H/H = (G/H)^u</math>.<ref name=N180>Neukirch (1999) p.180</ref><ref name=S75>Serre (1979) p.75</ref> This allows one to define ramification groups in the upper numbering for infinite Galois extensions (such as the [[absolute Galois group]] of a local field) from the inverse system of ramification groups for finite subextensions. The upper numbering for an abelian extension is important because of the [[Hasse–Arf theorem]]. It states that if <math>G</math> is abelian, then the jumps in the filtration <math>G^v</math> are integers; i.e., <math>G_i = G_{i+1}</math> whenever <math>\phi(i)</math> is not an integer.<ref name=N355>Neukirch (1999) p.355</ref> The upper numbering is compatible with the filtration of the norm residue group by the unit groups under the [[Artin isomorphism]]. The image of <math>G^n(L/K)</math> under the isomorphism :<math> G(L/K)^{\mathrm{ab}} \leftrightarrow K^*/N_{L/K}(L^*) </math> is just<ref name=Sn3031>Snaith (1994) pp.30-31</ref> :<math> U^n_K / (U^n_K \cap N_{L/K}(L^*)) \ . </math> ==See also== *[[Finite extensions of local fields]] == Notes == {{reflist|2}} ==References== *B. Conrad, [http://math.stanford.edu/~conrad/248APage/handouts/ramgroup.pdf Math 248A. Higher ramification groups] * {{cite book | last1=Fröhlich | first1=A. | author1-link=Albrecht Fröhlich | last2=Taylor | first2= M.J. | author2-link=Martin J. Taylor | title=Algebraic number theory | series=Cambridge studies in advanced mathematics | volume=27 | publisher=[[Cambridge University Press]] | year=1991 | isbn=0-521-36664-X | zbl=0744.11001 }} *{{Neukirch ANT}} * {{cite book | last=Serre | first=Jean-Pierre | authorlink=Jean-Pierre Serre | chapter=VI. Local class field theory | pages=128–161 | editor1-last=Cassels | editor1-first=J.W.S. | editor1-link=J. W. S. Cassels | editor2-last=Fröhlich | editor2-first=A. | editor2-link=Albrecht Fröhlich | title=Algebraic number theory. Proceedings of an instructional conference organized by the London Mathematical Society (a NATO Advanced Study Institute) with the support of the International Mathematical Union | location=London | publisher=Academic Press | year=1967 | zbl=0153.07403 }} * {{cite book | last1=Serre | first1=Jean-Pierre | author1-link=Jean-Pierre Serre | title=[[Local Fields]] | publisher=[[Springer-Verlag]] | location=Berlin, New York | mr=0554237 | year=1979 | translator-link1=Marvin Greenberg|translator-first1=Marvin Jay |translator-last1=Greenberg | series=Graduate Texts in Mathematics | volume=67 | isbn=0-387-90424-7 | zbl=0423.12016 }} * {{cite book | last=Snaith | first=Victor P. | title=Galois module structure | series=Fields Institute monographs | location=Providence, RI | publisher=[[American Mathematical Society]] | year=1994 | isbn=0-8218-0264-X | zbl=0830.11042 }} [[Category:Algebraic number theory]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Cite book
(
edit
)
Template:Math
(
edit
)
Template:Neukirch ANT
(
edit
)
Template:Nowrap
(
edit
)
Template:Pi
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)
Template:TOC right
(
edit
)