Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Rank–nullity theorem
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{redirect|Rank theorem|the rank theorem of multivariable calculus|constant rank theorem}} {{Short description|In linear algebra, relation between 3 dimensions}} [[File:Rank-nullity.svg|thumb|260px|Rank–nullity theorem]] The '''rank–nullity theorem''' is a theorem in [[linear algebra]], which asserts: * the number of columns of a matrix {{math|''M''}} is the sum of the [[rank (linear algebra)|rank]] of {{math|''M''}} and the [[nullity (linear algebra)|nullity]] of {{math|''M''}}; and * the [[dimension (linear algebra)|dimension]] of the [[domain of a function|domain]] of a [[linear transformation]] {{mvar|f}} is the sum of the [[rank (linear algebra)|rank]] of {{mvar|f}} (the dimension of the [[Image (mathematics)|image]] of {{mvar|f}}) and the nullity of {{mvar|f}} (the dimension of the [[Kernel (linear algebra)|kernel]] of {{mvar|f}}).<ref>{{Harvard citation text|Axler|2015}} p. 63, §3.22</ref><ref name=":0">{{Harvard citation text|Friedberg|Insel|Spence|2014}} p. 70, §2.1, Theorem 2.3</ref><ref>{{Harvard citation text|Katznelson|Katznelson|2008}} p. 52, §2.5.1</ref><ref>{{Harvard citation text|Valenza|1993}} p. 71, §4.3</ref> It follows that for linear transformations of [[vector space]]s of equal finite dimension, either [[injectivity]] or [[surjectivity]] implies [[bijectivity]]. ==Stating the theorem== ===Linear transformations=== Let <math>T : V \to W</math> be a linear transformation between two vector spaces where <math>T</math>'s domain <math>V</math> is finite dimensional. Then <math display=block>\operatorname{rank}(T) ~+~ \operatorname{nullity}(T) ~=~ \dim V,</math> where <math display=inline>\operatorname{rank}(T)</math> is the [[rank (linear algebra)|rank]] of <math>T</math> (the [[Dimension (vector space)|dimension]] of its [[Image (mathematics)|image]]) and <math>\operatorname{nullity}(T)</math> is the [[Nullity (linear algebra)|nullity]] of <math>T</math> (the dimension of its [[Kernel (linear algebra)|kernel]]). In other words, <math display=block>\dim (\operatorname{Im} T) + \dim (\operatorname{Ker} T) = \dim (\operatorname{Domain}(T)).</math> This theorem can be refined via the [[splitting lemma]] to be a statement about an [[isomorphism]] of spaces, not just dimensions. Explicitly, since <math> T </math> induces an isomorphism from <math>V / \operatorname{Ker} (T)</math> to <math>\operatorname{Im} (T),</math> the existence of a basis for <math> V </math> that extends any given basis of <math>\operatorname{Ker}(T)</math> implies, via the splitting lemma, that <math>\operatorname{Im}(T) \oplus \operatorname{Ker}(T) \cong V.</math> Taking dimensions, the rank–nullity theorem follows. === Matrices === Linear maps can be represented with [[Matrix (mathematics)|matrices]]. More precisely, an <math>m\times n</math> matrix {{mvar|M}} represents a linear map <math>f:F^n\to F^m,</math> where <math>F</math> is the underlying [[field (mathematics)|field]].<ref>{{Harvard citation text|Friedberg|Insel|Spence|2014}} pp. 103-104, §2.4, Theorem 2.20</ref> So, the dimension of the domain of <math>f</math> is {{mvar|n}}, the number of columns of {{mvar|M}}, and the rank–nullity theorem for an <math>m\times n</math> matrix {{mvar|M}} is <math display=block>\operatorname{rank}(M) + \operatorname{nullity}(M) = n.</math> == Proofs == Here we provide two proofs. The first<ref name=":0" /> operates in the general case, using linear maps. The second proof<ref>{{Citation | last1 = Banerjee | first1 = Sudipto | last2 = Roy | first2 = Anindya | date = 2014 | title = Linear Algebra and Matrix Analysis for Statistics | series = Texts in Statistical Science | publisher = Chapman and Hall/CRC | edition = 1st | isbn = 978-1420095388}}</ref> looks at the homogeneous system <math>\mathbf{Ax} = \mathbf{0},</math> where <math>\mathbf{A} </math> is a <math>m\times n</math> with [[rank (linear algebra)|rank]] <math>r,</math> and shows explicitly that there exists a set of <math>n-r</math> [[linearly independent]] solutions that span the null space of <math>\mathbf{A}</math>. While the theorem requires that the domain of the linear map be finite-dimensional, there is no such assumption on the codomain. This means that there are linear maps not given by matrices for which the theorem applies. Despite this, the first proof is not actually more general than the second: since the image of the linear map is finite-dimensional, we can represent the map from its domain to its image by a matrix, prove the theorem for that matrix, then compose with the inclusion of the image into the full codomain. ===First proof=== Let <math>V, W</math> be vector spaces over some field <math>F,</math> and <math>T</math> defined as in the statement of the theorem with <math>\dim V = n</math>. As <math>\operatorname{Ker}T \subset V</math> is a [[Linear subspace|subspace]], there exists a basis for it. Suppose <math>\dim\operatorname{Ker}T = k</math> and let <math display="block">\mathcal{K} := \{v_1, \ldots, v_k\} \subset \operatorname{Ker}(T)</math> be such a basis. We may now, by the [[Steinitz exchange lemma]], extend <math>\mathcal{K}</math> with <math>n-k</math> linearly independent vectors <math>w_1, \ldots, w_{n-k}</math> to form a full basis of <math>V</math>. Let <math display="block"> \mathcal{S} := \{w_1, \ldots, w_{n-k}\} \subset V \setminus \operatorname{Ker}(T) </math> such that <math display="block"> \mathcal{B} := \mathcal{K} \cup \mathcal{S} = \{v_1, \ldots, v_k, w_1, \ldots, w_{n-k}\} \subset V </math> is a basis for <math>V</math>. From this, we know that <math display="block">\operatorname{Im} T = \operatorname{Span}T(\mathcal{B}) = \operatorname{Span}\{T(v_1), \ldots, T(v_k), T(w_1), \ldots, T(w_{n-k})\}</math> ::<math> = \operatorname{Span}\{T(w_1), \ldots, T(w_{n-k})\} = \operatorname{Span}T(\mathcal{S}) .</math> We now claim that <math>T(\mathcal{S})</math> is a basis for <math>\operatorname{Im} T</math>. The above equality already states that <math>T(\mathcal{S})</math> is a generating set for <math>\operatorname{Im} T</math>; it remains to be shown that it is also linearly independent to conclude that it is a basis. Suppose <math>T(\mathcal{S})</math> is not linearly independent, and let <math display="block"> \sum_{j=1}^{n-k} \alpha _j T(w_j) = 0_W </math> for some <math>\alpha _j \in F</math>. Thus, owing to the linearity of <math>T</math>, it follows that <math display="block"> T \left(\sum_{j=1}^{n-k} \alpha _j w_j \right) = 0_W \implies \left(\sum_{j=1}^{n-k} \alpha _j w_j \right) \in \operatorname{Ker} T = \operatorname{Span} \mathcal{K} \subset V .</math> This is a contradiction to <math>\mathcal{B}</math> being a basis, unless all <math>\alpha _j</math> are equal to zero. This shows that <math>T(\mathcal{S})</math> is linearly independent, and more specifically that it is a basis for <math>\operatorname{Im}T</math>. To summarize, we have <math>\mathcal{K}</math>, a basis for <math>\operatorname{Ker}T</math>, and <math>T(\mathcal{S})</math>, a basis for <math>\operatorname{Im}T</math>. Finally we may state that <math display="block"> \operatorname{Rank}(T) + \operatorname{Nullity}(T) = \dim \operatorname{Im} T + \dim \operatorname{Ker}T</math> ::<math> = |T(\mathcal{S})| + |\mathcal{K}| = (n-k) + k = n = \dim V .</math> This concludes our proof. ===Second proof=== Let <math>\mathbf{A}</math> be an <math>m\times n</math> matrix with <math>r</math> [[linearly independent]] columns (i.e. <math>\operatorname{Rank}(\mathbf{A}) = r</math>). We will show that: {{ordered list|type=lower-roman |1= There exists a set of <math>n - r</math> linearly independent solutions to the homogeneous system <math>\mathbf{Ax} = \mathbf{0}</math>. |2= That every other solution is a linear combination of these <math>n-r</math> solutions. }} To do this, we will produce an <math>n \times (n-r)</math> matrix <math>\mathbf{X}</math> whose columns form a [[basis (linear algebra)|basis]] of the null space of <math>\mathbf{A}</math>. Without loss of generality, assume that the first <math>r</math> columns of <math>\mathbf{A}</math> are linearly independent. So, we can write <math display="block">\mathbf{A} = \begin{pmatrix} \mathbf{A}_1 & \mathbf{A}_2\end{pmatrix} ,</math> where *<math>\mathbf{A}_1</math> is an <math>m \times r</math> matrix with <math>r</math> linearly independent column vectors, and *<math>\mathbf{A}_2</math> is an <math>m\times (n-r)</math> matrix such that each of its <math>n-r</math> columns is linear combinations of the columns of <math>\mathbf{A}_1</math>. This means that <math>\mathbf{A}_2 = \mathbf{A}_1\mathbf{B}</math> for some <math>r \times (n-r)</math> matrix <math>\mathbf{B}</math> (see [[rank factorization]]) and, hence, <math display="block">\mathbf{A} = \begin{pmatrix} \mathbf{A}_1 & \mathbf{A}_1\mathbf{B}\end{pmatrix} .</math> Let <math display="block">\mathbf{X} = \begin{pmatrix} -\mathbf{B} \\ \mathbf{I}_{n-r} \end{pmatrix} , </math> where <math>\mathbf{I}_{n-r}</math> is the <math>(n-r)\times (n-r)</math> [[identity matrix]]. So, <math>\mathbf{X}</math> is an <math>n \times (n-r)</math> matrix such that <math display="block"> \mathbf{A}\mathbf{X} = \begin{pmatrix}\mathbf{A}_1 & \mathbf{A}_1\mathbf{B} \end{pmatrix}\begin{pmatrix} -\mathbf{B} \\ \mathbf{I}_{n-r} \end{pmatrix} = -\mathbf{A}_1\mathbf{B} + \mathbf{A}_1\mathbf{B} = \mathbf{0}_{m \times (n-r)}. </math> Therefore, each of the <math>n-r</math> columns of <math>\mathbf{X}</math> are particular solutions of <math>\mathbf{Ax} = {0}_{{F}^{m}}</math>. Furthermore, the <math>n-r</math> columns of <math>\mathbf{X}</math> are [[linearly independent]] because <math>\mathbf{Xu} = \mathbf{0}_{{F}^{n}}</math> will imply <math>\mathbf{u} = \mathbf{0}_{{F}^{n-r}}</math> for <math>\mathbf{u} \in {F}^{n-r}</math>: <math display="block"> \mathbf{X}\mathbf{u} = \mathbf{0}_{{F}^{n}} \implies \begin{pmatrix} -\mathbf{B} \\ \mathbf{I}_{n-r} \end{pmatrix}\mathbf{u} = \mathbf{0}_{{F}^{n}} \implies \begin{pmatrix} -\mathbf{B}\mathbf{u} \\ \mathbf{u} \end{pmatrix} = \begin{pmatrix} \mathbf{0}_{{F}^{r}} \\ \mathbf{0}_{{F}^{n-r}} \end{pmatrix} \implies \mathbf{u} = \mathbf{0}_{{F}^{n-r}}.</math> Therefore, the column vectors of <math>\mathbf{X}</math> constitute a set of <math>n-r</math> linearly independent solutions for <math>\mathbf{Ax} = \mathbf{0}_{\mathbb{F}^{m}}</math>. We next prove that ''any'' solution of <math>\mathbf{Ax} = \mathbf{0}_{{F}^{m}}</math> must be a [[linear combination]] of the columns of <math>\mathbf{X}</math>. For this, let <math display="block">\mathbf{u} = \begin{pmatrix} \mathbf{u}_1 \\ \mathbf{u}_2 \end{pmatrix} \in {F}^{n}</math> be any vector such that <math>\mathbf{Au} = \mathbf{0}_{{F}^{m}}</math>. Since the columns of <math>\mathbf{A}_1</math> are linearly independent, <math>\mathbf{A}_1\mathbf{x} = \mathbf{0}_{{F}^{m}}</math> implies <math>\mathbf{x} = \mathbf{0}_{{F}^{r}}</math>. Therefore, <math display="block">\begin{array}{rcl} \mathbf{A}\mathbf{u} & = & \mathbf{0}_{{F}^{m}} \\ \implies \begin{pmatrix}\mathbf{A}_1 & \mathbf{A}_1\mathbf{B}\end{pmatrix} \begin{pmatrix} \mathbf{u}_1 \\ \mathbf{u}_2 \end{pmatrix} & = & \mathbf{A}_1\mathbf{u}_1 + \mathbf{A}_1\mathbf{B}\mathbf{u}_2 & = & \mathbf{A}_1(\mathbf{u}_1 + \mathbf{B}\mathbf{u}_2) & = & \mathbf{0}_{\mathbb{F}^{m}} \\ \implies \mathbf{u}_1 + \mathbf{B}\mathbf{u}_2 & = & \mathbf{0}_{{F}^{r}} \\ \implies \mathbf{u}_1 & = & -\mathbf{B}\mathbf{u}_2 \end{array}</math> <math display="block"> \implies \mathbf{u} = \begin{pmatrix} \mathbf{u}_1 \\ \mathbf{u}_2 \end{pmatrix} = \begin{pmatrix} -\mathbf{B} \\ \mathbf{I}_{n-r} \end{pmatrix}\mathbf{u}_2 = \mathbf{X}\mathbf{u}_2. </math> This proves that any vector <math>\mathbf{u}</math> that is a solution of <math>\mathbf{Ax} = \mathbf{0}</math> must be a linear combination of the <math>n-r</math> special solutions given by the columns of <math>\mathbf{X}</math>. And we have already seen that the columns of <math>\mathbf{X}</math> are linearly independent. Hence, the columns of <math>\mathbf{X}</math> constitute a basis for the [[null space]] of <math>\mathbf{A}</math>. Therefore, the [[kernel (matrix)|nullity]] of <math>\mathbf{A}</math> is <math>n - r</math>. Since <math>r</math> equals rank of <math>\mathbf{A}</math>, it follows that <math>\operatorname{Rank}(\mathbf{A}) + \operatorname{Nullity}(\mathbf{A}) = n</math>. This concludes our proof. == A third fundamental subspace == When <math>T: V \to W</math> is a linear transformation between two finite-dimensional subspaces, with <math> n = \dim(V)</math> and <math> m = \dim(W)</math> (so can be represented by an <math>m \times n</math> matrix <math>M</math>), the rank–nullity theorem asserts that if <math>T</math> has rank <math>r</math>, then <math>n - r</math> is the dimension of the [[null space]] of <math>M</math>, which represents the [[kernel (linear algebra)|kernel]] of <math>T</math>. In some texts, a third fundamental subspace associated to <math>T</math> is considered alongside its image and kernel: the [[cokernel]] of <math>T</math> is the [[quotient space (linear algebra)|quotient space]] <math>W / \operatorname{Im}(T)</math>, and its dimension is <math>m - r</math>. This dimension formula (which might also be rendered <math>\dim \operatorname{Im}(T) + \dim\operatorname{Coker}(T) = \dim(W)</math>) together with the rank–nullity theorem is sometimes called the ''fundamental theorem of linear algebra''.<ref>* [[Gilbert Strang|Strang, Gilbert]]. ''Linear Algebra and Its Applications''. 3rd ed. Orlando: Saunders, 1988.</ref><ref>{{Citation | title = The fundamental theorem of linear algebra | url = http://www.dm.unibo.it/~regonati/ad0708/strang-FTLA.pdf <!-- if that goes dead try one of these: https://www.engineering.iastate.edu/~julied/classes/CE570/Notes/strangpaper.pdf --> | year = 1993 | author = Strang, Gilbert | journal = American Mathematical Monthly | volume = 100 | issue = 9 | pages = 848–855 | doi = 10.2307/2324660 | jstor = 2324660 | citeseerx = 10.1.1.384.2309 }}</ref> == Reformulations and generalizations == This theorem is a statement of the [[first isomorphism theorem]] of algebra for the case of vector spaces; it generalizes to the [[splitting lemma]]. In more modern language, the theorem can also be phrased as saying that each short exact sequence of vector spaces splits. Explicitly, given that <math display="block"> 0 \rightarrow U \rightarrow V \mathbin{\overset{T}{\rightarrow}} R \rightarrow 0 </math> is a [[short exact sequence]] of vector spaces, then <math> U \oplus R \cong V </math>, hence <math display="block">\dim(U) + \dim(R) = \dim(V) .</math> Here <math>R</math> plays the role of <math>\operatorname{Im} T</math> and <math>U</math> is <math>\operatorname{Ker}T</math>, i.e. <math display="block"> 0 \rightarrow \ker T \mathbin{\hookrightarrow} V \mathbin{\overset{T}{\rightarrow}} \operatorname{im} T \rightarrow 0</math> In the finite-dimensional case, this formulation is susceptible to a generalization: if <math display="block">0 \rightarrow V_1 \rightarrow V_2 \rightarrow \cdots V_r \rightarrow 0</math> is an [[exact sequence]] of finite-dimensional vector spaces, then<ref>{{cite web|last1=Zaman|first1=Ragib|title=Dimensions of vector spaces in an exact sequence|url=https://math.stackexchange.com/q/255384|accessdate=27 October 2015|website=Mathematics Stack Exchange|ref=DimVS}}</ref> <math display="block">\sum_{i=1}^r (-1)^i\dim(V_i) = 0.</math> The rank–nullity theorem for finite-dimensional vector spaces may also be formulated in terms of the ''index'' of a linear map. The index of a linear map <math>T \in \operatorname{Hom}(V,W)</math>, where <math>V</math> and <math>W</math> are finite-dimensional, is defined by <math display="block"> \operatorname{index} T = \dim \operatorname{Ker}(T) - \dim \operatorname{Coker} T .</math> Intuitively, <math>\dim \operatorname{Ker} T</math> is the number of independent solutions <math>v</math> of the equation <math>Tv = 0</math>, and <math>\dim \operatorname{Coker} T </math> is the number of independent restrictions that have to be put on <math>w</math> to make <math>Tv = w </math> solvable. The rank–nullity theorem for finite-dimensional vector spaces is equivalent to the statement <math display="block"> \operatorname{index} T = \dim V - \dim W . </math> We see that we can easily read off the index of the linear map <math>T</math> from the involved spaces, without any need to analyze <math>T</math> in detail. This effect also occurs in a much deeper result: the [[Atiyah–Singer index theorem]] states that the index of certain differential operators can be read off the geometry of the involved spaces. == Citations == {{reflist|colwidth=30em}} == References == * {{Cite book|last=Axler|first=Sheldon|title=Linear Algebra Done Right|publisher=[[Springer Science+Business Media|Springer]]| year=2015|isbn=978-3-319-11079-0|edition=3rd|series=[[Undergraduate Texts in Mathematics]]|location=|pages=|author-link=Sheldon Axler}} *{{Citation | last1 = Banerjee | first1 = Sudipto | last2 = Roy | first2 = Anindya | date = 2014 | title = Linear Algebra and Matrix Analysis for Statistics | series = Texts in Statistical Science | publisher = Chapman and Hall/CRC | edition = 1st | isbn = 978-1420095388}} * {{Cite book|last1=Friedberg|first1=Stephen H.|title=Linear Algebra|last2=Insel|first2=Arnold J.|last3=Spence|first3=Lawrence E.|publisher=[[Pearson Education]]|year=2014|isbn=978-0130084514|edition=4th|location=|pages=}} *{{Citation | last1=Meyer | first1=Carl D. | title=Matrix Analysis and Applied Linear Algebra | url=http://www.matrixanalysis.com/ | publisher=[[Society for Industrial and Applied Mathematics|SIAM]] | isbn=978-0-89871-454-8 | year=2000}}. *{{Cite book|last1=Katznelson|first1=Yitzhak|title=A (Terse) Introduction to Linear Algebra|last2=Katznelson|first2=Yonatan R.|year=2008| publisher=[[American Mathematical Society]]|isbn=978-0-8218-4419-9|volume=|publication-date=2008|pages=|author-link=Yitzhak Katznelson}} *{{Cite book|last=Valenza|first=Robert J.|title=Linear Algebra: An Introduction to Abstract Mathematics|publisher=[[Springer Science+Business Media|Springer]]|year=1993|isbn=3-540-94099-5|edition=3rd|series=[[Undergraduate Texts in Mathematics]]| location=| pages=|orig-year=1951}} ==External links== *{{aut|Gilbert Strang}}, [https://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/video-lectures/lecture-10-the-four-fundamental-subspaces/ MIT Linear Algebra Lecture on the Four Fundamental Subspaces], from [[MIT OpenCourseWare]] {{DEFAULTSORT:Rank-nullity theorem}} [[Category:Theorems in linear algebra]] [[Category:Isomorphism theorems]] [[Category:Articles containing proofs]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Aut
(
edit
)
Template:Citation
(
edit
)
Template:Cite book
(
edit
)
Template:Cite web
(
edit
)
Template:Harvard citation text
(
edit
)
Template:Math
(
edit
)
Template:Mvar
(
edit
)
Template:Ordered list
(
edit
)
Template:Redirect
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)