Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Reciprocal polynomial
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Polynomial with reversed root positions}} {{More citations needed|date=April 2021}} In [[algebra]], given a [[polynomial]] :<math>p(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n,</math> with [[coefficient]]s from an arbitrary [[Field (mathematics)|field]], its '''reciprocal polynomial''' or '''reflected polynomial''',<ref name="concrete">*{{cite book | last1 = Graham | first1 = Ronald |last2=Knuth|first2=Donald E.|last3=Patashnik|first3=Oren | title = Concrete mathematics : a foundation for computer science | edition=Second | publisher = Addison-Wesley | location = Reading, Mass | year = 1994 | isbn = 978-0201558029 | page= 340}}</ref><ref name="Aigner">{{cite book | last = Aigner | first = Martin | title = A course in enumeration | publisher = Springer | location = Berlin New York | year = 2007 | isbn = 978-3540390329 | page = 94 }}</ref> denoted by {{math|''p''<sup>∗</sup>}} or {{math|''p''<sup>R</sup>}},<ref name="Aigner"/><ref name="concrete"/> is the polynomial<ref>{{harvnb|Roman|1995|loc=pg.37}}</ref> :<math>p^*(x) = a_n + a_{n-1}x + \cdots + a_0x^n = x^n p(x^{-1}).</math> That is, the coefficients of {{math|''p''<sup>∗</sup>}} are the coefficients of {{math|''p''}} in reverse order. Reciprocal polynomials arise naturally in [[linear algebra]] as the [[characteristic polynomial]] of the [[inverse of a matrix]]. In the special case where the field is the [[complex number]]s, when :<math>p(z) = a_0 + a_1z + a_2z^2 + \cdots + a_nz^n,</math> the '''conjugate reciprocal polynomial''', denoted {{math|''p''<sup>†</sup>}}, is defined by, :<math>p^{\dagger}(z) = \overline{a_n} + \overline{a_{n-1}}z + \cdots + \overline{a_0}z^n = z^n\overline{p(\bar{z}^{-1})},</math> where <math>\overline{a_i}</math> denotes the [[complex conjugate]] of <math>a_i</math>, and is also called the reciprocal polynomial when no confusion can arise. A polynomial {{math|''p''}} is called '''self-reciprocal''' or '''palindromic''' if {{math|1=''p''(''x'') = ''p''<sup>∗</sup>(''x'')}}. The coefficients of a self-reciprocal polynomial satisfy {{math|1=''a''<sub>''i''</sub> = ''a''<sub>''n''−''i''</sub>}} for all {{math|''i''}}. == Properties == Reciprocal polynomials have several connections with their original polynomials, including: # {{math|1=deg ''p'' = deg ''p''<sup>∗</sup> if <math>a_0</math> is not 0.}} # {{math|1=''p''(''x'') = ''x''<sup>''n''</sup>''p''<sup>∗</sup>(''x''<sup>−1</sup>)}}.<ref name="Aigner"/> # For {{math|''α''}} is a [[zero of a function|root]] of a polynomial {{math|''p''}} if and only if {{math|''α''<sup>−1</sup>}} is a root of {{math|''p''<sup>∗</sup>}} or if <math> \alpha = 0 </math> and <math> p ^* </math> is of lower degree than <math> p </math>.<ref name="Pless 1990 loc=pg. 57">{{harvnb|Pless|1990|loc=pg. 57}}</ref> # If {{math|''x'' ∤ ''p''(''x'')}} then {{math|''p''}} is [[Irreducible polynomial|irreducible]] if and only if {{math|''p''<sup>∗</sup>}} is irreducible.<ref name="Roman 1995 loc= pg. 37">{{harvnb|Roman|1995|loc= pg. 37}}</ref> # {{math|''p''}} is [[Primitive polynomial (field theory)|primitive]] if and only if {{math|''p''<sup>∗</sup>}} is primitive.<ref name="Pless 1990 loc=pg. 57"/> Other properties of reciprocal polynomials may be obtained, for instance: * A self-reciprocal polynomial of odd degree is divisible by x+1, hence is not irreducible if its degree is > 1. =={{anchor|Palindromic polynomial|Antipalindromic polynomial}} Palindromic and antipalindromic polynomials== A self-reciprocal polynomial is also called palindromic because its coefficients, when the polynomial is written in the order of ascending or descending powers, form a [[palindrome]]. That is, if :<math> P(x) = \sum_{i=0}^n a_ix^i</math> is a polynomial of [[Degree of a polynomial|degree]] {{math|''n''}}, then {{math|''P''}} is ''palindromic'' if {{math|1=''a<sub>i</sub>'' = ''a''<sub>''n''−''i''</sub>}} for {{math|1=''i'' = 0, 1, ..., ''n''}}. Similarly, a polynomial {{math|''P''}} of degree {{math|''n''}} is called '''antipalindromic''' if {{math|1=''a<sub>i</sub>'' = −''a''<sub>''n''−''i''</sub>}} for {{math|1=''i'' = 0, 1, ..., ''n''}}. That is, a polynomial {{math|''P''}} is ''antipalindromic'' if {{math|1=''P''(''x'') = –''P''<sup>∗</sup>(''x'')}}. ===Examples=== From the properties of the [[binomial coefficient]]s, it follows that the polynomials {{math|1=''P''(''x'') = (''x'' + 1)<sup>''n''</sup>}} are palindromic for all positive [[integer]]s {{math|''n''}}, while the polynomials {{math|1=''Q''(''x'') = (''x'' – 1)<sup>''n''</sup>}} are palindromic when {{math|''n''}} is even and antipalindromic when {{math|''n''}} is [[parity (mathematics)|odd]]. Other examples of palindromic polynomials include [[cyclotomic polynomial]]s and [[Eulerian polynomial]]s. ===Properties=== * If {{math|''a''}} is a root of a polynomial that is either palindromic or antipalindromic, then {{sfrac|{{math|''a''}}}} is also a root and has the same [[multiplicity (mathematics)|multiplicity]].<ref>{{harvnb|Pless|1990|loc=pg. 57}} for the palindromic case only</ref> * The converse is true: If for each root {{math|''a''}} of polynomial, the value {{sfrac|{{math|''a''}}}} is also a root of the same multiplicity, then the polynomial is either palindromic or antipalindromic. * For any polynomial {{math|''q''}}, the polynomial {{math|''q'' + ''q''<sup>∗</sup>}} is palindromic and the polynomial {{math|''q'' − ''q''<sup>∗</sup>}} is antipalindromic. * It follows that any polynomial {{math|''q''}} can be written as the sum of a palindromic and an antipalindromic polynomial, since {{math|1=''q'' = (''q'' + ''q''<sup>∗</sup>)/2 + (''q'' − ''q''<sup>∗</sup>)/2}}.<ref>{{citation|first=Jonathan Y.|last=Stein|title=Digital Signal Processing: A Computer Science Perspective|publisher=Wiley Interscience|year=2000|page=384|isbn=9780471295464}}</ref> * The product of two palindromic or antipalindromic polynomials is palindromic. * The product of a palindromic polynomial and an antipalindromic polynomial is antipalindromic. * A palindromic polynomial of odd degree is a multiple of {{math|''x'' + 1}} (it has –1 as a root) and its quotient by {{math|''x'' + 1}} is also palindromic. * An antipalindromic polynomial over a field {{mvar|k}} with odd [[Characteristic (algebra)|characteristic]] is a multiple of {{math|''x'' – 1}} (it has 1 as a root) and its quotient by {{math|''x'' – 1}} is palindromic. * An antipalindromic polynomial of even degree is a multiple of {{math|''x''<sup>2</sup> – 1}} (it has −1 and 1 as roots) and its quotient by {{math|''x''<sup>2</sup> – 1}} is palindromic. * If {{math|''p''(''x'')}} is a palindromic polynomial of even degree 2{{mvar|d}}, then there is a polynomial {{math|''q''}} of degree {{math|''d''}} such that {{math|1=''p''(''x'') = ''x''<sup>''d''</sup>''q''(''x'' + {{sfrac|1|''x''}})}}.<ref>{{harvnb|Durand|1961}}</ref> * If {{math|''p''(''x'')}} is a [[monic polynomial|monic]] antipalindromic polynomial of even degree 2{{mvar|d}} over a field {{mvar|k}} of odd [[Characteristic (algebra)|characteristic]], then it can be written uniquely as {{math|1=''p''(''x'') = ''x''<sup>''d''</sup>(''Q''(''x'') − ''Q''({{sfrac|''x''}}))}}, where {{mvar|Q}} is a monic polynomial of degree {{mvar|d}} with no constant term.<ref>{{citation|first=Nicholas M.|last=Katz|title=Convolution and Equidistribution : Sato-Tate Theorems for Finite Field Mellin Transformations|publisher=Princeton University Press|year=2012|isbn=9780691153315|page=146}}</ref> * If an antipalindromic polynomial {{math|''P''}} has even degree {{math|2''n''}} over a field {{mvar|k}} of odd characteristic, then its "middle" coefficient (of power {{math|''n''}}) is 0 since {{math|1=''a''<sub>''n''</sub> = −''a''<sub>2''n'' – ''n''</sub>}}. ===Real coefficients=== A polynomial with [[Real number|real]] coefficients all of whose [[Complex number|complex]] roots lie on the unit circle in the [[complex plane]] (that is, all the roots have modulus 1) is either palindromic or antipalindromic.<ref>{{cite book|first1=Ivan|last1=Markovsky|first2=Shodhan|last2=Rao|title=2008 16th Mediterranean Conference on Control and Automation |chapter=Palindromic polynomials, time-reversible systems, and conserved quantities |publisher=IEEE|pages=125–130|year=2008|doi=10.1109/MED.2008.4602018|isbn=978-1-4244-2504-4|s2cid=14122451 |url=https://eprints.soton.ac.uk/266592/1/Med08.pdf}}</ref> ==Conjugate reciprocal polynomials{{anchor|Conjugate}}== A polynomial is '''conjugate reciprocal''' if <math>p(x) \equiv p^{\dagger}(x)</math> and '''self-inversive''' if <math>p(x) = \omega p^{\dagger}(x)</math> for a scale factor {{math|''ω''}} on the [[unit circle]].<ref name=SV08>{{cite book | last1=Sinclair | first1=Christopher D. | last2=Vaaler | first2=Jeffrey D. | chapter=Self-inversive polynomials with all zeros on the unit circle | zbl=1334.11017 | editor1-last=McKee | editor1-first=James | editor2-last=Smyth | editor2-first=C. J. | title=Number theory and polynomials. Proceedings of the workshop, Bristol, UK, April 3–7, 2006 | location=Cambridge | publisher=[[Cambridge University Press]] | isbn=978-0-521-71467-9 | series=London Mathematical Society Lecture Note Series | volume=352 | pages=312–321 | year=2008 }}</ref> If {{math|''p''(''z'')}} is the [[Minimal polynomial (field theory)|minimal polynomial]] of {{math|''z''<sub>0</sub>}} with {{math|1={{abs|''z''<sub>0</sub>}} = 1, ''z''<sub>0</sub> ≠ 1}}, and {{math|''p''(''z'')}} has [[real number|real]] coefficients, then {{math|''p''(''z'')}} is self-reciprocal. This follows because :<math>z_0^n\overline{p(1/\bar{z_0})} = z_0^n\overline{p(z_0)} = z_0^n\bar{0} = 0.</math> So {{math|''z''<sub>0</sub>}} is a root of the polynomial <math>z^n\overline{p(\bar{z}^{-1})}</math> which has degree {{math|''n''}}. But, the minimal polynomial is unique, hence :<math>cp(z) = z^n\overline{p(\bar{z}^{-1})}</math> for some constant {{math|''c''}}, i.e. <math>ca_i=\overline{a_{n-i}}=a_{n-i}</math>. Sum from {{math|1=''i'' = 0}} to {{math|''n''}} and note that 1 is not a root of {{math|''p''}}. We conclude that {{math|1=''c'' = 1}}. A consequence is that the [[cyclotomic polynomial]]s {{math|Φ<sub>''n''</sub>}} are self-reciprocal for {{math|''n'' > 1}}. This is used in the [[special number field sieve]] to allow numbers of the form {{math|''x''<sup>11</sup> ± 1, ''x''<sup>13</sup> ± 1, ''x''<sup>15</sup> ± 1}} and {{math|''x''<sup>21</sup> ± 1}} to be factored taking advantage of the algebraic factors by using polynomials of degree 5, 6, 4 and 6 respectively – note that {{math|''φ''}} ([[Euler's totient function]]) of the exponents are 10, 12, 8 and 12.{{Citation needed|date=November 2021}} Per [[Cohn's theorem]], a self-inversive polynomial has as many roots in the [[unit disk]] <math>\{z\in\mathbb{C}: |z| < 1\}</math> as the reciprocal polynomial of its [[derivative]].<ref>{{Cite journal|last=Ancochea|first=Germán|date=1953|title=Zeros of self-inversive polynomials|url=https://www.ams.org/proc/1953-004-06/S0002-9939-1953-0058748-8/|journal=Proceedings of the American Mathematical Society|language=en|volume=4|issue=6|pages=900–902|doi=10.1090/S0002-9939-1953-0058748-8|issn=0002-9939|doi-access=free}}</ref><ref>{{Cite journal|last1=Bonsall|first1=F. F.|last2=Marden|first2=Morris|date=1952|title=Zeros of self-inversive polynomials|url=https://www.ams.org/proc/1952-003-03/S0002-9939-1952-0047828-8/|journal=Proceedings of the American Mathematical Society|language=en|volume=3|issue=3|pages=471–475|doi=10.1090/S0002-9939-1952-0047828-8|issn=0002-9939|doi-access=free}}</ref> ==Application in coding theory== The reciprocal polynomial finds a use in the theory of [[Cyclic code|cyclic error correcting codes]]. Suppose {{math|''x''<sup>''n''</sup> − 1}} can be factored into the product of two polynomials, say {{math|1=''x''<sup>''n''</sup> − 1 = ''g''(''x'')''p''(''x'')}}. When {{math|''g''(''x'')}} generates a cyclic code {{math|''C''}}, then the reciprocal polynomial {{math|''p''<sup>∗</sup>}} generates {{math|''C''<sup>⊥</sup>}}, the [[orthogonal complement]] of {{math|''C''}}.<ref>{{harvnb|Pless|1990|loc = pg. 75, Theorem 48}}</ref> Also, {{math|''C''}} is ''self-orthogonal'' (that is, {{math|''C'' ⊆ ''C''<sup>⊥</sup>)}}, if and only if {{math|''p''<sup>∗</sup>}} divides {{math|''g''(''x'')}}.<ref>{{harvnb|Pless|1990|loc = pg. 77, Theorem 51}}</ref> == See also == *[[Cohn's theorem ]] == Notes == {{reflist}} ==References== * {{citation|first=Vera|last=Pless|title=Introduction to the Theory of Error Correcting Codes|edition=2nd|publisher=Wiley-Interscience|place=New York|year=1990|isbn=0-471-61884-5|title-link= Introduction to the Theory of Error-Correcting Codes}} * {{citation|first=Steven|last=Roman|title=Field Theory|publisher=Springer-Verlag|place=New York|year=1995|isbn=0-387-94408-7}} * {{citation|first=Émile |last=Durand |year=1961 |title=Solutions numériques des équations algrébriques |volume=I |chapter=Masson et Cie: XV - polynômes dont les coefficients sont symétriques ou antisymétriques |pages=140–141}} == External links == * {{MathPages|id=home/kmath294/kmath294|title=The fundamental theorem for palindromic polynomials}} * {{MathWorld |urlname=ReciprocalPolynomial |title=Reciprocal polynomial}} [[Category:Polynomials]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Anchor
(
edit
)
Template:Citation
(
edit
)
Template:Citation needed
(
edit
)
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Harvnb
(
edit
)
Template:Math
(
edit
)
Template:MathPages
(
edit
)
Template:MathWorld
(
edit
)
Template:More citations needed
(
edit
)
Template:Mvar
(
edit
)
Template:Reflist
(
edit
)
Template:SfnRef
(
edit
)
Template:Sfrac
(
edit
)
Template:Short description
(
edit
)