Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Residue theorem
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{short description|Concept of complex analysis}} {{Complex analysis sidebar}} In [[complex analysis]], the '''residue theorem''', sometimes called '''Cauchy's residue theorem''', is a powerful tool to evaluate [[line integral]]s of [[analytic function]]s over closed curves; it can often be used to compute real integrals and [[infinite series]] as well. It generalizes the [[Cauchy integral theorem]] and [[Cauchy's integral formula]]. The '''residue theorem''' should not be confused with special cases of the [[generalized Stokes' theorem]]; however, the latter can be used as an ingredient of its proof. ==Statement of Cauchy's residue theorem== {{See also|Residue (complex analysis)}} The statement is as follows: <blockquote> [[File:Residue theorem illustration.svg|thumb|Illustration of the setting]] '''Residue theorem''': Let <math>U</math> be a [[simply connected]] [[open subset]] of the [[complex plane]] containing a finite list of points <math>a_1, \ldots, a_n,</math> <math>U_0 = U \smallsetminus \{a_1, \ldots, a_n\},</math> and a function <math>f</math> [[holomorphic function|holomorphic]] on <math>U_0.</math> Letting <math>\gamma</math> be a closed [[rectifiable curve]] in <math>U_0,</math> and denoting the [[residue (complex analysis)|residue]] of <math>f</math> at each point <math>a_k</math> by <math>\operatorname{Res}(f, a_k)</math> and the [[winding number]] of <math>\gamma</math> around <math>a_k</math> by <math>\operatorname{I}(\gamma, a_k),</math> the line integral of <math>f</math> around <math>\gamma</math> is equal to <math>2\pi i</math> times the sum of residues, each counted as many times as <math>\gamma</math> winds around the respective point: <math display=block> \oint_\gamma f(z)\, dz = 2\pi i \sum_{k=1}^n \operatorname{I}(\gamma, a_k) \operatorname{Res}(f, a_k). </math> If <math>\gamma</math> is a [[Curve orientation|positively oriented]] [[Jordan curve|simple closed curve]], <math>\operatorname{I}(\gamma, a_k)</math> is <math>1</math> if <math>a_k</math> is in the interior of <math>\gamma</math> and <math>0</math> if not, therefore <math display=block> \oint_\gamma f(z)\, dz = 2\pi i \sum \operatorname{Res}(f, a_k) </math> with the sum over those <math>a_k</math> inside {{nobr|<math>\gamma.</math><ref>{{harvnb|Whittaker|Watson|1920|loc=§6.1|page=112}}.</ref>}} </blockquote> The relationship of the residue theorem to Stokes' theorem is given by the [[Jordan curve theorem]]. The general [[plane curve]] {{mvar|γ}} must first be reduced to a set of simple closed curves <math>\{\gamma_i\}</math> whose total is equivalent to <math>\gamma</math> for integration purposes; this reduces the problem to finding the integral of <math>f\, dz</math> along a Jordan curve <math>\gamma_i</math> with interior <math>V.</math> The requirement that <math>f</math> be holomorphic on <math>U_0 = U \smallsetminus \{a_k\}</math> is equivalent to the statement that the [[exterior derivative]] <math>d(f\, dz) = 0</math> on <math>U_0.</math> Thus if two planar regions <math>V</math> and <math>W</math> of <math>U</math> enclose the same subset <math>\{a_j\}</math> of <math>\{a_k\},</math> the regions <math>V \smallsetminus W</math> and <math>W \smallsetminus V</math> lie entirely in <math>U_0,</math> hence <math display=block> \int_{V \smallsetminus W} d(f \, dz) - \int_{W \smallsetminus V} d(f \, dz) </math> is well-defined and equal to zero. Consequently, the contour integral of <math>f\, dz</math> along <math>\gamma_j = \partial V</math> is equal to the sum of a set of integrals along paths <math>\gamma_j,</math> each enclosing an arbitrarily small region around a single <math>a_j</math> — the residues of <math>f</math> (up to the conventional factor <math>2\pi i</math> at <math>\{a_j\}.</math> Summing over <math>\{\gamma_j\},</math> we recover the final expression of the contour integral in terms of the winding numbers <math>\{\operatorname{I}(\gamma, a_k)\}.</math> In order to evaluate real integrals, the residue theorem is used in the following manner: the integrand is extended to the complex plane and its residues are computed (which is usually easy), and a part of the real axis is extended to a closed curve by attaching a half-circle in the upper or lower half-plane, forming a semicircle. The integral over this curve can then be computed using the residue theorem. Often, the half-circle part of the integral will tend towards zero as the radius of the half-circle grows, leaving only the real-axis part of the integral, the one we were originally interested in. == Calculation of residues == {{Excerpt|Residue (complex analysis)|Calculation of residues|subsections=yes}} ==Examples== ===An integral along the real axis=== The integral <math display="block">\int_{-\infty}^\infty \frac{e^{itx}}{x^2+1}\,dx</math> [[Image:Contour example.svg|class=skin-invert-image|right|300px|thumb|The contour {{mvar|C}}.]] arises in [[probability theory]] when calculating the [[characteristic function (probability theory)|characteristic function]] of the [[Cauchy distribution]]. It resists the techniques of elementary [[calculus]] but can be evaluated by expressing it as a limit of [[contour integral]]s. Suppose {{math|''t'' > 0}} and define the contour {{mvar|C}} that goes along the [[real number|real]] line from {{math|−''a''}} to {{mvar|a}} and then counterclockwise along a semicircle centered at 0 from {{mvar|a}} to {{math|−''a''}}. Take {{mvar|a}} to be greater than 1, so that the [[imaginary number|imaginary]] unit {{mvar|i}} is enclosed within the curve. Now consider the contour integral <math display="block">\int_C {f(z)}\,dz = \int_C \frac{e^{itz}}{z^2+1}\,dz.</math> Since {{math|''e''<sup>''itz''</sup>}} is an [[entire function]] (having no [[mathematical singularity|singularities]] at any point in the complex plane), this function has singularities only where the denominator {{math|''z''<sup>2</sup> + 1}} is zero. Since {{math|1=''z''<sup>2</sup> + 1 = (''z'' + ''i'')(''z'' − ''i'')}}, that happens only where {{math|1=''z'' = ''i''}} or {{math|1=''z'' = −''i''}}. Only one of those points is in the region bounded by this contour. Because {{math|''f''(''z'')}} is <math display="block">\begin{align} \frac{e^{itz}}{z^2+1} & =\frac{e^{itz}}{2i}\left(\frac{1}{z-i}-\frac{1}{z+i}\right) \\ & =\frac{e^{itz}}{2i(z-i)} -\frac{e^{itz}}{2i(z+i)} , \end{align}</math> the [[residue (complex analysis)|residue]] of {{math|''f''(''z'')}} at {{math|1=''z'' = ''i''}} is <math display="block">\operatorname{Res}_{z=i}f(z)=\frac{e^{-t}}{2i}.</math> According to the residue theorem, then, we have <math display="block">\int_C f(z)\,dz=2\pi i\cdot\operatorname{Res}\limits_{z=i}f(z)=2\pi i \frac{e^{-t}}{2i} = \pi e^{-t}.</math> The contour {{mvar|C}} may be split into a straight part and a curved arc, so that <math display="block">\int_{\mathrm{straight}} f(z)\,dz+\int_{\mathrm{arc}} f(z)\,dz=\pi e^{-t}</math> and thus <math display="block">\int_{-a}^a f(z)\,dz =\pi e^{-t}-\int_{\mathrm{arc}} f(z)\,dz.</math> Using some [[Estimation lemma|estimations]], we have <math display="block">\left|\int_{\mathrm{arc}}\frac{e^{itz}}{z^2+1}\,dz\right| \leq \pi a \cdot \sup_{\text{arc}} \left| \frac{e^{itz}}{z^2+1} \right| \leq \pi a \cdot \sup_{\text{arc}} \frac{1}{|z^2+1|} \leq \frac{\pi a}{a^2 - 1},</math> and <math display="block">\lim_{a \to \infty} \frac{\pi a}{a^2-1} = 0.</math> The estimate on the numerator follows since {{math|''t'' > 0}}, and for [[complex number]]s {{mvar|z}} along the arc (which lies in the upper half-plane), the argument {{mvar|φ}} of {{mvar|z}} lies between 0 and {{pi}}. So, <math display="block">\left|e^{itz}\right| = \left|e^{it|z|(\cos\varphi + i\sin\varphi)}\right|=\left|e^{-t|z|\sin\varphi + it|z|\cos\varphi}\right|=e^{-t|z| \sin\varphi} \le 1.</math> Therefore, <math display="block">\int_{-\infty}^\infty \frac{e^{itz}}{z^2+1}\,dz=\pi e^{-t}.</math> If {{math|''t'' < 0}} then a similar argument with an arc {{math|{{prime|''C''}}}} that winds around {{math|−''i''}} rather than {{math|''i''}} shows that [[Image:Contour example 2.svg|class=skin-invert-image|right|300px|thumb|The contour {{math|{{prime|''C''}}}}.]] <math display="block">\int_{-\infty}^\infty\frac{e^{itz}}{z^2+1}\,dz=\pi e^t,</math> and finally we have <math display="block">\int_{-\infty}^\infty\frac{e^{itz}}{z^2+1}\,dz=\pi e^{-\left|t\right|}.</math> (If {{math|1=''t'' = 0}} then the integral yields immediately to elementary calculus methods and its value is {{pi}}.) ===Evaluating zeta functions=== The fact that {{math|''π'' cot(''πz'')}} has simple poles with residue 1 at each integer can be used to compute the sum <math display="block"> \sum_{n=-\infty}^\infty f(n).</math> Consider, for example, {{math|1=''f''(''z'') = ''z''<sup>−2</sup>}}. Let {{math|Γ<sub>''N''</sub>}} be the rectangle that is the boundary of {{math|[−''N'' − {{sfrac|1|2}}, ''N'' + {{sfrac|1|2}}]<sup>2</sup>}} with positive orientation, with an integer {{mvar|N}}. By the residue formula, <math display="block">\frac{1}{2 \pi i} \int_{\Gamma_N} f(z) \pi \cot(\pi z) \, dz = \operatorname{Res}\limits_{z = 0} + \sum_{n = -N \atop n\ne 0}^N n^{-2}.</math> The left-hand side goes to zero as {{math|''N'' → ∞}} since <math>|\cot(\pi z)|</math> is uniformly bounded on the contour, thanks to using <math>x = \pm \left(\frac 12 + N\right)</math> on the left and right side of the contour, and so the integrand has order <math>O(N^{-2})</math> over the entire contour. On the other hand,<ref>{{harvnb|Whittaker|Watson|1920|loc=§7.2|page=125}}. Note that the Bernoulli number <math>B_{2n}</math> is denoted by <math>B_{n}</math> in Whittaker & Watson's book.</ref> <math display="block">\frac{z}{2} \cot\left(\frac{z}{2}\right) = 1 - B_2 \frac{z^2}{2!} + \cdots </math> where the [[Bernoulli number]] <math>B_2 = \frac{1}{6}.</math> (In fact, {{math|1={{sfrac|''z''|2}} cot({{sfrac|''z''|2}}) = {{sfrac|''iz''|1 − ''e''<sup>−''iz''</sup>}} − {{sfrac|''iz''|2}}}}.) Thus, the residue {{math|Res{{sub|1=''z''=0}}}} is {{math|−{{sfrac|''π''<sup>2</sup>|3}}}}. We conclude: <math display="block">\sum_{n = 1}^\infty \frac{1}{n^2} = \frac{\pi^2}{6}</math> which is a proof of the [[Basel problem]]. The same argument works for all <math>f(x) = x^{-2n}</math> where <math>n</math> is a positive integer, [[Particular values of the Riemann zeta function|giving us]]<math display="block"> \zeta(2n) = \frac{(-1)^{n+1}B_{2n}(2\pi)^{2n}}{2(2n)!}.</math>The trick does not work when <math>f(x) = x^{-2n-1}</math>, since in this case, the residue at zero vanishes, and we obtain the useless identity <math>0 + \zeta(2n+1) - \zeta(2n+1) = 0</math>. === Evaluating Eisenstein series === The same trick can be used to establish the sum of the [[Eisenstein series]]:<math display="block">\pi \cot(\pi z) = \lim_{N \to \infty} \sum_{n=-N}^N (z - n)^{-1}.</math> {{Math proof|title=Proof|proof= Pick an arbitrary <math>w \in \mathbb C\setminus \Z</math>. As above, define <math display="block">g(z) := \frac{1}{w-z} \pi \cot(\pi z)</math> By the Cauchy residue theorem, for all <math>N</math> large enough such that <math>\Gamma_N</math> encircles <math>w</math>, <math display="block"> \frac{1}{2 \pi i} \oint_{\Gamma_N} g(z) dz = -\pi \cot(\pi z) + \sum_{n=-N}^N \frac{1}{z-n}</math> It remains to prove the integral converges to zero. Since <math>\pi\cot(\pi z) /z</math> is an even function, and <math>\Gamma_N</math> is symmetric about the origin, we have <math>\oint_{\Gamma_N} \pi\cot(\pi z) /z dz = 0</math>, and so <math display="block">\oint_{\Gamma_N} g(z) dz = \oint_{\Gamma_N} \left(\frac 1z + \frac{1}{w-z}\right) \pi\cot(\pi z)dz = -w \oint_{\Gamma_N} \frac{1}{z(z-w)} \pi\cot(\pi z) dz = O(1/N)</math> }} ==See also== * [[Residue (complex analysis)]] * [[Cauchy's integral formula]] * [[Glasser's master theorem]] * [[Jordan's lemma]] * [[Methods of contour integration]] * [[Morera's theorem]] * [[Nachbin's theorem]] * [[Residue at infinity]] * [[Logarithmic form]] ==Notes== {{reflist}} ==References== * {{cite book | last = Ahlfors | first = Lars | author-link = Lars Ahlfors | title = Complex Analysis | publisher = McGraw Hill | year = 1979 | isbn = 0-07-085008-9 }} * {{cite book | last = Lindelöf | first = Ernst L. | author-link = Ernst Leonard Lindelöf | title = Le calcul des résidus et ses applications à la théorie des fonctions | publisher = Editions Jacques Gabay | year = 1905 | language = fr | publication-date = 1989 | isbn = 2-87647-060-8 }} * {{cite book | last1 = Mitrinović | first1 = Dragoslav | last2 = Kečkić | first2 = Jovan | title = The Cauchy method of residues: Theory and applications | publisher = D. Reidel Publishing Company | year = 1984 | isbn = 90-277-1623-4 }} * {{cite book | last1 = Whittaker | first1 = E. T. | author1-link = E. T. Whittaker | last2 = Watson | first2 = G. N. | author2-link = G. N. Watson | title = [[A Course of Modern Analysis]] | publisher = Cambridge University Press | edition = 3rd | year = 1920 }} ==External links== * {{springer|title=Cauchy integral theorem|id=p/c020900}} * [http://mathworld.wolfram.com/ResidueTheorem.html Residue theorem] in [[MathWorld]] [[Category:Theorems in complex analysis]] [[Category:Analytic functions]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Cite book
(
edit
)
Template:Complex analysis sidebar
(
edit
)
Template:Excerpt
(
edit
)
Template:Harvnb
(
edit
)
Template:Math
(
edit
)
Template:Math proof
(
edit
)
Template:Mvar
(
edit
)
Template:Nobr
(
edit
)
Template:Pi
(
edit
)
Template:Reflist
(
edit
)
Template:See also
(
edit
)
Template:Short description
(
edit
)
Template:Springer
(
edit
)