Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Resistance distance
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{short description|Graph metric of electrical resistance between nodes}} In [[graph theory]], the '''resistance distance''' between two [[vertex (graph theory)|vertices]] of a [[Graph (discrete mathematics)|simple]], [[connected graph]], {{mvar|G}}, is equal to the [[electrical resistance|resistance]] between two equivalent points on an [[electrical network]], constructed so as to correspond to {{mvar|G}}, with each [[graph (discrete mathematics)|edge]] being replaced by a [[electrical resistance|resistance]] of one [[ohm]]. It is a [[metric (mathematics)|metric]] on [[Graph (discrete mathematics)|graphs]]. ==Definition== On a [[Graph (discrete mathematics)|graph]] {{mvar|G}}, the '''resistance distance''' {{math|Ξ©{{sub|''i'',''j''}}}} between two vertices {{mvar|v{{sub|i}}}} and {{mvar|v{{sub|j}}}} is<ref>{{Cite web|url=https://mathworld.wolfram.com/ResistanceDistance.html|title = Resistance Distance}}</ref> :<math> \Omega_{i,j}:=\Gamma_{i,i}+\Gamma_{j,j}-\Gamma_{i,j}-\Gamma_{j,i}, </math> :where <math>\Gamma = \left(L + \frac{1}{|V|}\Phi\right)^+,</math> with {{math|{{sup|+}}}} denotes the [[MooreβPenrose inverse]], {{mvar|L}} the [[Laplacian matrix]] of {{mvar|G}}, {{math|{{abs|''V''}}}} is the number of vertices in {{mvar|G}}, and {{math|Ξ¦}} is the {{math|{{abs|''V''}} Γ {{abs|''V''}}}} matrix containing all 1s. ==Properties of resistance distance== If {{math|1=''i'' = ''j''}} then {{math|1=Ξ©{{sub|''i'',''j''}} = 0}}. For an undirected graph :<math>\Omega_{i,j}=\Omega_{j,i}=\Gamma_{i,i}+\Gamma_{j,j}-2\Gamma_{i,j}</math> ===General sum rule=== For any {{mvar|N}}-vertex [[graph (discrete mathematics)|simple connected graph]] {{math|1=''G'' = (''V'', ''E'')}} and arbitrary {{math|''N''Γ''N''}} [[matrix (mathematics)|matrix]] {{mvar|M}}: :<math>\sum_{i,j \in V}(LML)_{i,j}\Omega_{i,j} = -2\operatorname{tr}(ML)</math> From this generalized sum rule a number of relationships can be derived depending on the choice of {{mvar|M}}. Two of note are; :<math>\begin{align} \sum_{(i,j) \in E}\Omega_{i,j} &= N - 1 \\ \sum_{i<j \in V}\Omega_{i,j} &= N\sum_{k=1}^{N-1} \lambda_k^{-1} \end{align}</math> where the {{mvar|Ξ»{{sub|k}}}} are the non-zero [[eigenvalues]] of the [[Laplacian matrix]]. This unordered sum :<math>\sum_{i<j} \Omega_{i,j}</math> is called the Kirchhoff index of the graph. ===Relationship to the number of spanning trees of a graph=== For a simple connected graph {{math|1=''G'' = (''V'', ''E'')}}, the '''resistance distance''' between two vertices may be expressed as a [[Function (mathematics)|function]] of the [[Set (mathematics)|set]] of [[spanning tree (mathematics)|spanning trees]], {{mvar|T}}, of {{mvar|G}} as follows: :<math> \Omega_{i,j}=\begin{cases} \frac{\left | \{t:t \in T,\, e_{i,j} \in t\} \right \vert}{\left | T \right \vert}, & (i,j) \in E\\ \frac{\left | T'-T \right \vert}{\left | T \right \vert}, &(i,j) \not \in E \end{cases} </math> where {{mvar|T'}} is the set of spanning trees for the graph {{math|1=''G' ''= (''V'', ''E'' + ''e''{{sub|''i'',''j''}})}}. In other words, for an edge <math>(i,j)\in E</math>, the resistance distance between a pair of nodes <math>i</math> and <math>j</math> is the probability that the edge <math>(i,j)</math> is in a random spanning tree of <math>G</math>. ===Relationship to random walks=== The resistance distance between vertices <math>u</math> and <math>v</math> is proportional to the '''commute time''' <math>C_{u,v}</math> of a [[random walk]] between <math>u</math> and <math>v</math>. The commute time is the expected number of steps in a random walk that starts at <math>u</math>, visits <math>v</math>, and returns to <math>u</math>. For a graph with <math>m</math> edges, the resistance distance and commute time are related as <math>C_{u,v}=2m\Omega_{u,v}</math>.<ref>{{cite book |last1=Chandra, Ashok K and Raghavan, Prabhakar and Ruzzo, Walter L and Smolensky, Roman |title=Proceedings of the twenty-first annual ACM symposium on Theory of computing - STOC '89 |chapter=The electrical resistance of a graph captures its commute and cover times |date=1989 |issue=21 |pages=574β685 |doi=10.1145/73007.73062 |isbn=0897913078 |chapter-url=https://dl.acm.org/doi/abs/10.1145/73007.73062}}</ref> Resistance distance is also related to the '''escape probability''' between two vertices. The escape probability <math>P_{u,v}</math> between <math>u</math> and <math>v</math> is the probability that a random walk starting at <math>u</math> visits <math>v</math> before returning to <math>u</math>. The escape probability equals :<math> P_{u,v} = \frac{1}{\deg(u)\Omega_{u,v}}, </math> where <math>\deg(u)</math> is the [[Degree (graph theory)|degree]] of <math>u</math>.<ref>{{cite book |last1=Doyle |first1=Peter |last2=Snell |first2=J. Laurie |title=Random Walks and Electric Networks |date=1984 |publisher=American Mathematical Society |isbn=9781614440222}}</ref> Unlike the commute time, the escape probability is not symmetric in general, i.e., <math>P_{u,v}\neq P_{v,u}</math>. ===As a squared Euclidean distance=== Since the Laplacian {{mvar|L}} is symmetric and positive semi-definite, so is :<math>\left(L+\frac{1}{|V|}\Phi\right),</math> thus its pseudo-inverse {{math|Ξ}} is also symmetric and positive semi-definite. Thus, there is a {{mvar|K}} such that <math>\Gamma = KK^\textsf{T}</math> and we can write: :<math>\Omega_{i,j} = \Gamma_{i,i} + \Gamma_{j,j} - \Gamma_{i,j} - \Gamma_{j,i} = K_iK_i^\textsf{T} + K_j K_j^\textsf{T} - K_i K_j^\textsf{T} - K_j K_i^\textsf{T} = \left(K_i - K_j\right)^2</math> showing that the square root of the resistance distance corresponds to the [[Euclidean distance]] in the space spanned by {{mvar|K}}. ===Connection with Fibonacci numbers === A fan graph is a graph on {{math|''n'' + 1}} vertices where there is an edge between vertex {{mvar|i}} and {{math|''n'' + 1}} for all {{math|1=''i'' = 1, 2, 3, β¦, ''n''}}, and there is an edge between vertex {{mvar|i}} and {{mvar|''i'' + 1}} for all {{math|1=i = 1, 2, 3, β¦, ''n'' β 1}}. The resistance distance between vertex {{math|''n'' + 1}} and vertex {{math|''i'' β {1, 2, 3, β¦, ''n''} }} is :<math>\frac{ F_{2(n-i)+1} F_{2i-1} }{ F_{2n} }</math> where {{mvar|F{{sub|j}}}} is the {{mvar|j}}-th Fibonacci number, for {{math|''j'' β₯ 0}}.<ref>{{cite journal | last1 = Bapat | first1 = R. B. | last2 = Gupta | first2 = Somit | doi = 10.1007/s13226-010-0004-2 | issue = 1 | journal = Indian Journal of Pure and Applied Mathematics | mr = 2650096 | pages = 1β13 | title = Resistance distance in wheels and fans | url = https://www.isid.ac.in/~rbb/somitnew.pdf | volume = 41 | year = 2010}}</ref> == See also == * [[Conductance (graph)]] ==References== {{Reflist}} * {{cite journal |first1= D. J. |last1=Klein |first2=M. J. |last2=Randic |journal=J. Math. Chem. |doi=10.1007/BF01164627 |title=Resistance Distance |volume=12 |pages=81β95 |year=1993 |s2cid=16382100 }} * {{cite journal |first1=Ivan |last1=Gutman |first2=Bojan |last2=Mohar |title=The quasi-Wiener and the Kirchhoff indices coincide |year=1996 |journal=J. Chem. Inf. Comput. Sci. |volume=36 |issue=5 |pages=982β985 |doi=10.1021/ci960007t }} * {{cite journal |title=Closed-form formulas for the Kirchhoff index |first1=Jose Luis |last1=Palacios |journal=Int. J. Quantum Chem. |year=2001 |volume=81 |issue=2 |pages=135β140 |doi=10.1002/1097-461X(2001)81:2<135::AID-QUA4>3.0.CO;2-G }} * {{cite journal |first1=D. |last1=Babic |first2=D. J. |last2=Klein |first3=I. |last3=Lukovits |first4=S. |last4=Nikolic |first5=N. |last5=Trinajstic |title=Resistance-distance matrix: a computational algorithm and its application |journal=Int. J. Quantum Chem. |year=2002 |doi=10.1002/qua.10057 |volume=90 |number=1 |pages=166β167 }} * {{cite journal |url = http://www.stkpula.hr/ccacaa/CCA-PDF/cca2002/v75-n2/CCA_75_2002_633_649_KLEIN.pdf |journal = Croatica Chem. Acta |last1 = Klein |first1 = D. J. |title = Resistance Distance Sum Rules |year = 2002 |volume = 75 |number = 2 |pages = 633β649 |url-status = dead |archiveurl = https://web.archive.org/web/20120326104653/http://www.stkpula.hr/ccacaa/CCA-PDF/cca2002/v75-n2/CCA_75_2002_633_649_KLEIN.pdf |archivedate = 2012-03-26 }} * {{cite journal |first1=Ravindra B. |last1=Bapat |first2=Ivan |last2=Gutman |first3=Wenjun |last3=Xiao |title=A simple method for computing resistance distance |journal=Z. Naturforsch. |year=2003 |volume=58a |issue=9β10 |pages=494β498 |url=http://www.znaturforsch.com/aa/v58a/c58a.htm#No9 |bibcode = 2003ZNatA..58..494B |doi = 10.1515/zna-2003-9-1003 |doi-access=free }} * {{cite journal |first1=Jose Luis |last1=Placios |title=Foster's formulas via probability and the Kirchhoff index |journal=Method. Comput. Appl. Probab. |year=2004 |volume=6 |number=4 |pages=381β387 |doi=10.1023/B:MCAP.0000045086.76839.54 |s2cid=120309331 }} * {{cite journal |first1=Enrique |last1=Bendito |first2=Angeles |last2=Carmona |first3=Andres M. |last3=Encinas |first4=Jose M. |last4=Gesto |title=A formula for the Kirchhoff index |journal=Int. J. Quantum Chem. |year=2008 |doi=10.1002/qua.21588 |pages=1200β1206 |volume=108 |number=6 |bibcode = 2008IJQC..108.1200B }} * {{cite journal |journal=Int. J. Quantum Chem. |first1=Bo |last1=Zhou |title=The Kirchhoff index and the matching number |first2=Nenad |last2=Trinajstic |volume=109 |issue=13 |year=2009 |pages=2978β2981 |doi=10.1002/qua.21915 |bibcode = 2009IJQC..109.2978Z }} * {{cite journal |first1=Bo |last1=Zhou |first2=Nenad |last2=Trinajstic |title=On resistance-distance and the Kirchhoff index |journal=J. Math. Chem. |year=2009 |volume=46 |pages=283β289 |doi=10.1007/s10910-008-9459-3 |hdl=10338.dmlcz/140814 |s2cid=119389248 |hdl-access=free }} * {{cite journal |first1=Bo |last1=Zhou |title=On sum of powers of Laplacian eigenvalues and Laplacian Estrada Index of graphs |journal=Match Commun. Math. Comput. Chem |volume=62 |pages=611β619 |arxiv=1102.1144 |year=2011 }} * {{cite journal |first1=Heping |last1=Zhang |first2=Yujun |last2=Yang |title=Resistance distance and Kirchhoff index in circulant graphs |journal=Int. J. Quantum Chem. |year=2007 |volume=107 |issue=2 |pages=330β339 |doi=10.1002/qua.21068 |bibcode = 2007IJQC..107..330Z }} * {{cite journal |first1=Yujun |last1=Yang |first2=Heping |last2=Zhang |title=Some rules on resistance distance with applications |journal=J. Phys. A: Math. Theor. |year=2008 |volume=41 |issue=44 |pages=445203 |doi=10.1088/1751-8113/41/44/445203 |bibcode = 2008JPhA...41R5203Y |s2cid=122226781 }} [[Category:Electrical resistance and conductance]] [[Category:Graph distance]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite web
(
edit
)
Template:Math
(
edit
)
Template:Mvar
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)