Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Ring-opening polymerization
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{short description|Chain polymerization involving cyclic monomers}} {{Quote box |title = [[International Union of Pure and Applied Chemistry|IUPAC]] definition |quote = A [[polymerization]] in which a [[Cyclic compound|cyclic]] [[monomer]] yields a monomeric unit which is [[Open-chain compound|acyclic]] or contains fewer cycles than the monomer. Note: If monomer is [[Polycyclic compound|polycyclic]], the opening of a single ring is sufficient to classify the [[Chemical reaction|reaction]] as ring-opening polymerization. Modified from the earlier definition.<ref name="Goldbook">{{GoldBookRef|title=Ring-opening polymerization|file=R05396|accessdate=Mar 10, 2014}}</ref><ref name=PAC1996>{{cite journal |url= http://iupac.org/publications/pac/68/12/2287/ |doi = 10.1351/pac199668122287 |title= Glossary of basic terms in polymer science (IUPAC Recommendations 1996) |last1= Jenkins |first1= A. D. |last2= Kratochvíl |first2= P. |last3= Stepto |first3= R. F. T. |last4= Suter |first4= U. W. |journal= Pure and Applied Chemistry |volume=68 |year=1996 |pages=2287–2311 |issue= 12|doi-access= free}}</ref> |source = [http://www.iupac.org/publications/pac/80/10/2163/ Penczek S.; Moad, G. ''Pure Appl. Chem.'', '''2008''', 80(10), 2163-2193] |align = right }} [[File:General scheme ionic prop.png|thumb|600px|General scheme ionic propagation. Propagating center can be radical, cationic or anionic.]] In [[polymer chemistry]], '''ring-opening polymerization''' ('''ROP''') is a form of [[chain-growth polymerization]] in which the [[End group|terminus]] of a [[polymer]] chain attacks [[cyclic compound|cyclic monomers]] to form a longer polymer (see figure). The reactive center can be [[Radical (chemistry)|radical]], [[anion]]ic or [[cation]]ic. Ring-opening of cyclic monomers is often driven by the relief of [[ring strain|bond-angle strain]]. Thus, as is the case for other types of polymerization, the [[enthalpy]] change in ring-opening is negative.<ref name=Young>{{cite book|last=Young|first=Robert J.|title=Introduction to Polymers|year=2011|publisher=CRC Press|location=Boca Raton|isbn=978-0-8493-3929-5}}</ref> Many rings undergo ROP.<ref>{{cite journal |doi=10.1007/s00726-006-0432-9 |title=Mechanisms of homocysteine toxicity in humans |date=2007 |last1=Perła-Kaján |first1=J. |last2=Twardowski |first2=T. |last3=Jakubowski |first3=H. |journal=Amino Acids |volume=32 |issue=4 |pages=561–572 |pmid=17285228 }}</ref> ==Monomers== Many [[cyclic compound|cyclic monomers]] are amenable to ROP.<ref>{{cite journal |doi=10.3390/polym5020361|doi-access=free |title=Ring-Opening Polymerization—An Introductory Review |date=2013 |last1=Nuyken |first1=Oskar |last2=Pask |first2=Stephen |journal=Polymers |volume=5 |issue=2 |pages=361–403 }}</ref> These include [[epoxide]]s,<ref name=Sarazin>{{cite journal|title=Discrete Cationic Complexes for Ring-Opening Polymerization Catalysis of Cyclic Esters and Epoxides|author=Yann Sarazin |author2=Jean-François Carpentier |journal=Chemical Reviews|year=2015|volume=115|issue=9|pages=3564–3614|doi=10.1021/acs.chemrev.5b00033|pmid=25897976}}</ref><ref name=Longo>{{cite journal|title=Ring-Opening Copolymerization of Epoxides and Cyclic Anhydrides with Discrete Metal Complexes: Structure–Property Relationships|first1=Julie M.|last1=Longo|first2=Maria J.|last2= Sanford|first3=Geoffrey W.|last3=Coates|journal=Chemical Reviews|year=2016|volume=116|issue=24|pages=15167–15197|doi=10.1021/acs.chemrev.6b00553|pmid=27936619}}</ref> cyclic trisiloxanes,{{cn|date=December 2023}} some lactones<ref name=Sarazin/><ref name=Jerome>{{Cite journal|last1=JEROME|first1=C|last2=LECOMTE|first2=P|date=2008-06-10|title=Recent advances in the synthesis of aliphatic polyesters by ring-opening polymerization☆|journal=Advanced Drug Delivery Reviews|volume=60|issue=9|pages=1056–1076|doi=10.1016/j.addr.2008.02.008|pmid=18403043|hdl=2268/3723|issn=0169-409X|url=http://orbi.ulg.ac.be/handle/2268/3723|hdl-access=free}}</ref> and [[lactide]]s,<ref name=Jerome/> cyclic [[anhydride]]s,<ref name=Longo/> [[cyclic carbonate]]s,<ref>{{cite journal|last=Matsumura|first=Shuichi|author2=Tsukada, Keisuke |author3=Toshima, Kazunobu |title=Enzyme-Catalyzed Ring-Opening Polymerization of 1,3-Dioxan-2-one to Poly(trimethylene carbonate)|journal=Macromolecules|date=May 1997|volume=30|issue=10|pages=3122–3124|doi=10.1021/ma961862g|bibcode=1997MaMol..30.3122M}} </ref> and [[amino acid N-carboxyanhydride|amino acid ''N''-carboxyanhydride]]s.<ref>{{cite journal|author=Kricheldorf, H. R. |year=2006 |title=Polypeptides and 100 Years of Chemistry of α-Amino Acid ''N''-Carboxyanhydrides|journal=Angewandte Chemie International Edition |volume=45|issue=35|pages=5752–5784|doi= 10.1002/anie.200600693|pmid=16948174 }}</ref><ref>{{cite journal|title=Synthesis of Well-Defined Polypeptide-Based Materials via the Ring-Opening Polymerization of α-Amino Acid N-Carboxyanhydrides|author=Nikos Hadjichristidis |author2=Hermis Iatrou |author3=Marinos Pitsikalis |author4=Georgios Sakellariou |journal=Chemical Reviews|year=2009|volume=109|issue=11|pages= 5528–5578|doi=10.1021/cr900049t|pmid=19691359}}</ref> Many strained [[cycloalkene]]s, e.g [[norbornene]], are suitable monomers via [[ring-opening metathesis polymerization]]. Even highly strained [[cycloalkane]] rings, such as [[cyclopropane]]<ref>{{cite journal |title= The Polymerization of Cyclopropane |first1= R. J. |last1= Scott |first2= H. E. |last2= Gunning |journal= J. Phys. Chem. |year= 1952 |volume= 56 |issue= 1 |pages= 156–160 |doi= 10.1021/j150493a031 }}</ref> and [[cyclobutane]]<ref>{{cite journal |title= Ring-Opening Polymerization of the Cyclobutane Adduct of Methyl Tricyanoethylenecarboxylate and Ethyl Vinyl Ether |first1= Tsutomu |last1= Yokozawa |first2= Ei-ichi |last2= Tsuruta |journal= Macromolecules |year= 1996 |volume= 29 |issue= 25 |pages= 8053–8056 |doi= 10.1021/ma9608535 |bibcode= 1996MaMol..29.8053Y }}</ref> derivatives, can undergo ROP. ==History== Ring-opening polymerization has been used since the beginning of the 1900s to produce [[polymer]]s. Synthesis of [[polypeptides]] which has the oldest history of ROP, dates back to the work in 1906 by Leuchs.<ref>{{cite journal|title=Glycine-carbonic acid|last=Leuchs|first=H.|journal=Berichte der Deutschen Chemischen Gesellschaft|year=1906|volume=39|page=857|doi=10.1002/cber.190603901133|url=https://zenodo.org/record/1426172}}</ref> Subsequently, the ROP of anhydro [[sugars]] provided [[polysaccharides]], including synthetic [[dextran]], [[xanthan gum]], [[welan gum]], [[gellan gum]], diutan gum, and [[pullulan]]. Mechanisms and thermodynamics of ring-opening polymerization were established in the 1950s.<ref>{{cite journal|last=Dainton|first=F. S.|author2=Devlin, T. R. E. |author3=Small, P. A. |title=The thermodynamics of polymerization of cyclic compounds by ring opening|journal=Transactions of the Faraday Society|year=1955|volume=51|page=1710|doi=10.1039/TF9555101710}}</ref><ref>{{cite journal|last=Conix|first=André|author2=Smets, G. |title=Ring opening in lactam polymers|journal=Journal of Polymer Science|date=January 1955|volume=15|issue=79|pages=221–229|doi=10.1002/pol.1955.120157918|bibcode=1955JPoSc..15..221C}}</ref> The first high-molecular weight polymers (M<sub>n</sub> up to 10<sup>5</sup>) with a [[repeat unit|repeating unit]] were prepared by ROP as early as in 1976.<ref>{{cite journal|last1= Kałuz̀ynski|first1=Krzysztof|last2=Libiszowski|first2=Jan|last3=Penczek|first3=Stanisław|title=Poly(2-hydro-2-oxo-1,3,2-dioxaphosphorinane). Preparation and NMR spectra|journal=Die Makromolekulare Chemie|volume=178|issue=10|year=1977|pages=2943–2947|issn=0025-116X|doi=10.1002/macp.1977.021781017}}</ref><ref>{{cite journal|last=Libiszowski|first=Jan|author2=Kałużynski, Krzysztof |author3=Penczek, Stanisław |title=Polymerization of cyclic esters of phosphoric acid. VI. Poly(alkyl ethylene phosphates). Polymerization of 2-alkoxy-2-oxo-1,3,2-dioxaphospholans and structure of polymers|journal=Journal of Polymer Science: Polymer Chemistry Edition|date=June 1978|volume=16|issue=6|pages=1275–1283|doi=10.1002/pol.1978.170160610|bibcode=1978JPoSA..16.1275L}}</ref> New research shows that ROP can be completed with cyclic esters with minimal to no use of solvents by using resonant acoustic mixing.<ref>{{Cite journal |last1=Fowler |first1=Harriet R. |last2=O’Shea |first2=Riley |last3=Sefton |first3=Joseph |last4=Howard |first4=Shaun C. |last5=Muir |first5=Benjamin W. |last6=Stockman |first6=Robert A. |last7=Taresco |first7=Vincenzo |last8=Irvine |first8=Derek J. |date=2025-02-10 |title=Rapid, Highly Sustainable Ring-Opening Polymerization via Resonant Acoustic Mixing |journal=ACS Sustainable Chemistry & Engineering |volume=13 |issue=5 |pages=1916–1926 |doi=10.1021/acssuschemeng.4c06330 |pmc=11816011 |pmid=39950108}}</ref> An industrial application is the production of [[nylon-6]] from [[caprolactam]]. ==Mechanisms== Ring-opening polymerization can proceed via [[Radical (chemistry)|radical]], anionic, or cationic polymerization as described below.<ref name=nuyken>{{cite journal|last=Nuyken|first=Oskar|author2=Stephen D. Pask |title=Ring-Opening Polymerization—An Introductory Review|journal=Polymers|date=25 April 2013|volume=5|issue=2|pages=361–403|doi=10.3390/polym5020361|doi-access=free}}</ref> Additionally, radical ROP is useful in producing polymers with [[functional group]]s incorporated in the backbone chain that cannot otherwise be synthesized via conventional [[chain-growth polymerization]] of [[Vinyl group|vinyl]] monomers. For instance, radical ROP can produce polymers with [[ethers]], [[esters]], [[amide]]s, and [[carbonates]] as functional groups along the main chain.<ref name=nuyken /><ref name=dubois>{{cite book|last=Dubois|first=Philippe|title=Handbook of ring-opening polymerization|year=2008|publisher=Wiley-VCH|location=Weinheim|isbn=978-3-527-31953-4|edition=1. Aufl.}}</ref> ===Anionic ring-opening polymerization (AROP)=== {{main article|Anionic polymerization}} [[File:Wiki566665.tif|thumb|400px|center|The general mechanism for anionic ring-opening polymerization. Polarized functional group is represented by X-Y, where the atom X (usually a carbon atom) becomes electron deficient due to the highly electron-withdrawing nature of Y (usually an oxygen, nitrogen, sulfur, etc.). The nucleophile will attack atom X, thus releasing Y<sup>−</sup>. The newly formed nucleophile will then attack the atom X in another monomer molecule, and the sequence would repeat until the polymer is formed.<ref name=dubois />]] Anionic ring-opening polymerizations (AROP) involve [[nucleophile|nucleophilic reagents]] as initiators. Monomers with a three-member ring structure - such as [[epoxides]], [[aziridines]], and [[episulfides]] - undergo anionic ROP.<ref name=dubois /> A typical example of anionic ROP is that of [[caprolactone|ε-caprolactone]], initiated by an [[alkoxide]].<ref name=dubois /> ===Cationic ring-opening polymerization=== {{main article|Cationic polymerization}} Cationic initiators and intermediates characterize cationic ring-opening polymerization (CROP). Examples of [[cyclic compound|cyclic monomers]] that polymerize through this mechanism include [[lactone]]s, [[lactam]]s, [[amine]]s, and [[ether]]s.<ref name="cowie cation">{{cite book|last=Cowie|first=John McKenzie Grant|title=Polymers: Chemistry and Physics of Modern Materials|year=2008|publisher=CRC Press|location=Boca Raton, Florida|isbn=978-0-8493-9813-1|pages=105–107}}</ref> CROP proceeds through an [[SN1 reaction|S<sub>N</sub>1]] or [[SN2 reaction|S<sub>N</sub>2]] propagation, chain-growth process.<ref name=nuyken /> The mechanism is affected by the stability of the resulting [[ion|cationic]] species. For example, if the atom bearing the positive charge is stabilized by [[activating group|electron-donating groups]], polymerization will proceed by the S<sub>N</sub>1 mechanism.<ref name=dubois /> The cationic species is a [[heteroatom]] and the chain grows by the addition of cyclic monomers thereby opening the ring system. [[File:PTMEG synthesis.svg|450px|center|thumb|Synthesis of [[Spandex]].<ref name="kirk">{{cite encyclopedia |year=1996 |title =Polyethers, Tetrahydrofuran and Oxetane Polymers |first1= Gerfried|last1= Pruckmayr|first2= P.|last2= Dreyfuss|first3= M. P.|last3= Dreyfuss |encyclopedia=Kirk‑Othmer Encyclopedia of Chemical Technology |publisher=John Wiley & Sons }}</ref>]] The monomers can be activated by [[Brønsted–Lowry acid–base theory|Bronsted acids]], [[carbenium ion]]s, [[Onium compound|onium ions]], and metal cations.<ref name=nuyken /> CROP can be a [[living polymerization]] and can be terminated by nucleophilic reagents such as [[Alkoxy group|phenoxy anions]], [[phosphine]]s, or [[Polyelectrolyte|polyanions]].<ref name=nuyken /> When the amount of monomers becomes depleted, termination can occur intra or intermolecularly. The active end can "backbite" the chain, forming a [[macrocycle]]. [[Alkyl]] chain transfer is also possible, where the active end is quenched by transferring an alkyl chain to another polymer. ===Ring-opening metathesis polymerization=== {{main article|Ring-opening metathesis polymerization}} [[Ring-opening metathesis polymerisation]] (ROMP) produces [[Saturated and unsaturated compounds|unsaturated]] polymers from [[cycloalkene]]s or bicycloalkenes. It requires [[Organometallic chemistry|organometallic catalysts]].<ref name=nuyken /> The mechanism for ROMP follows similar pathways as [[olefin metathesis]]. The initiation process involves the coordination of the cycloalkene monomer to the [[Transition metal carbene complex|metal alkylidene complex]], followed by a [2+2] type [[cycloaddition]] to form the metallacyclobutane intermediate that cycloreverts to form a new alkylidene species.<ref name=sutthasupa>{{cite journal|last=Sutthasupa|first=Sutthira|author2=Shiotsuki, Masashi |author3=Sanda, Fumio |title=Recent advances in ring-opening metathesis polymerization, and application to synthesis of functional materials|journal=Polymer Journal|date=13 October 2010|volume=42|issue=12|pages=905–915|doi=10.1038/pj.2010.94|doi-access=free}}</ref><ref name=hartwig>{{cite book|last=Hartwig|first=John F.| author-link = John F. Hartwig | title=Organotransition metal chemistry: from bonding to catalysis|year=2010|publisher=University Science Books|location=Sausalito, California|isbn=978-1-891389-53-5}}</ref> [[File:Romp mechanism.png|thumb|center|850px|General scheme of the mechanism for ROMP.]] Commercially relevant [[Saturated and unsaturated compounds|unsaturated]] polymers synthesized by ROMP include poly[[norbornene]], poly[[cyclooctene]], and poly[[cyclopentadiene]].<ref>{{Cite journal|last1=Walsh|first1=Dylan J.|last2=Lau|first2=Sii Hong|last3=Hyatt|first3=Michael G.|last4=Guironnet|first4=Damien|date=2017-09-25|title=Kinetic Study of Living Ring-Opening Metathesis Polymerization with Third-Generation Grubbs Catalysts|journal=Journal of the American Chemical Society|language=EN|volume=139|issue=39|pages=13644–13647|doi=10.1021/jacs.7b08010|pmid=28944665|bibcode=2017JAChS.13913644W |issn=0002-7863}}</ref> ==Thermodynamics== The formal thermodynamic criterion of a given monomer polymerizability is related to a sign of the [[free enthalpy]] ([[Gibbs free energy]]) of polymerization: <math display=block>\Delta G_p(xy) = \Delta H_p(xy)-T\Delta S_p(xy)</math> where: :{{mvar|x}} and {{mvar|y}} indicate monomer and polymer states, respectively ({{mvar|x}} and/or {{mvar|y}} = l (liquid), g ([[gaseous]]), c ([[amorphous solid]]), c' ([[crystalline solid]]), s ([[Solution (chemistry)|solution]])); :{{math|Δ''H<sub>p</sub>''(''xy'')}} is the [[enthalpy]] of polymerization (SI unit: joule per kelvin); :{{math|Δ''S{{sub|p}}''(''xy'')}} is the [[entropy]] of polymerization (SI unit: joule); :{{mvar|T}} is the [[absolute temperature]] (SI unit: kelvin). The free enthalpy of polymerization ({{math|Δ''G<sub>p</sub>''}}) may be expressed as a sum of standard enthalpy of polymerization ({{math|Δ''G<sub>p</sub>''°}}) and a term related to instantaneous monomer molecules and growing [[macromolecules]] concentrations: <math chem display=block>\Delta G_p = \Delta G^\circ_p + RT\ln\frac{[\ldots - (\ce{m})_{i+1} \ce{m}^\ast]}{[\ce{M}][\ldots-(\ce{m})_i \ce{m}^\ast]}</math> where: :{{mvar|R}} is the [[gas constant]]; :{{math|M}} is the monomer; :{{math|(m)<sub>''i''</sub>}} is the monomer in an initial state; :{{math|m<sup>*</sup>}} is the active monomer. Following [[Flory–Huggins solution theory]] that the reactivity of an active center, located at a [[macromolecule]] of a sufficiently long macromolecular chain, does not depend on its [[degree of polymerization]] ({{math|''DP{{sub|i}}''}}), and taking in to account that {{math|1=Δ''G<sub>p</sub>''° = Δ''H<sub>p</sub>''° − ''T''Δ''S<sub>p</sub>''°}} (where {{math|Δ''H<sub>p</sub>''°}} and {{math|Δ''S<sub>p</sub>''°}} indicate a standard polymerization enthalpy and entropy, respectively), we obtain: :<math>\Delta G_p = \Delta H^\circ_p - T(\Delta S^\circ_p + R\ln[M])</math> At [[Chemical equilibrium|equilibrium]] ({{math|1=Δ''G<sub>p</sub>'' = 0}}), when polymerization is complete the monomer concentration ({{math|[M]<sub>eq</sub>}}) assumes a value determined by standard polymerization parameters ({{math|Δ''H<sub>p</sub>''°}} and {{math|Δ''S<sub>p</sub>''°}}) and polymerization temperature: <math chem display=block>\begin{align} {}[\ce{M}]_{\rm eq} &= \exp\left(\frac{\Delta H^\circ_p}{RT} - \frac{\Delta S^\circ_p}{R}\right) \\[4pt] \ln\frac{DP_n}{DP_n - 1}[\ce{M}]_{\rm eq} &= \frac{\Delta H^\circ_p}{RT} - \frac{\Delta S^\circ_p}{R} \\[4pt] [\ce{M}]_{\rm eq} &= \frac{DP_n - 1}{DP_n} \exp\left(\frac{\Delta H^\circ_p}{RT} - \frac{\Delta S^\circ_p}{R}\right) \end{align}</math> Polymerization is possible only when {{math|[M]<sub>0</sub> > [M]<sub>eq</sub>}}. Eventually, at or above the so-called [[ceiling temperature]] ({{mvar|T<sub>c</sub>}}), at which {{math|1=[M]<sub>eq</sub> = [M]<sub>0</sub>}}, formation of the high polymer does not occur. <math chem display=block>\begin{align} T_c &= \frac{\Delta H^\circ_p}{\Delta S^\circ_p + R\ln[\ce{M}]_0} ; \quad (\Delta H^\circ_p<0,\ \Delta S^\circ_p<0) \\[4pt] T_f &= \frac{\Delta H^\circ_p}{\Delta S^\circ_p + R\ln[\ce{M}]_0} ; \quad (\Delta H^\circ_p>0,\ \Delta S^\circ_p>0) \end{align}</math> For example, [[tetrahydrofuran]] (THF) cannot be polymerized above {{mvar|T<sub>c</sub>}} = 84 °C, nor cyclo-octasulfur (S<sub>8</sub>) below {{mvar|T<sub>f</sub>}} = 159 °C.<ref>{{cite journal|last=Tobolsky|first=A. V.|title=Equilibrium polymerization in the presence of an ionic initiator|journal=Journal of Polymer Science|date=July 1957|volume=25|issue=109|pages=220–221|doi=10.1002/pol.1957.1202510909|bibcode=1957JPoSc..25..220T}}</ref><ref>{{cite journal|last=Tobolsky|first=A. V.|title=Equilibrium polymerization in the presence of an ionic initiator|journal=Journal of Polymer Science|date=August 1958|volume=31|issue=122|page=126|doi=10.1002/pol.1958.1203112214|bibcode=1958JPoSc..31..126T|doi-access=free}}</ref><ref>{{cite journal|last=Tobolsky|first=Arthur V.|author2=Eisenberg, Adi |title=Equilibrium Polymerization of Sulfur|journal=Journal of the American Chemical Society|date=May 1959|volume=81|issue=4|pages=780–782|doi=10.1021/ja01513a004|bibcode=1959JAChS..81..780T }}</ref><ref>{{cite journal|last=Tobolsky|first=A. V.|author2=Eisenberg, A. |title=A General Treatment of Equilibrium Polymerization|journal=Journal of the American Chemical Society|date=January 1960|volume=82|issue=2|pages=289–293|doi=10.1021/ja01487a009|bibcode=1960JAChS..82..289T }}</ref> However, for many monomers, {{mvar|T<sub>c</sub>}} and {{mvar|T<sub>f</sub>}}, for polymerization in the bulk, are well above or below the operable polymerization temperatures, respectively. The polymerization of a majority of monomers is accompanied by an [[entropy]] decrease, due mostly to the loss in the translational degrees of freedom. In this situation, polymerization is thermodynamically allowed only when the enthalpic contribution into {{math|Δ''G<sub>p</sub>''}} prevails (thus, when {{math|Δ''H<sub>p</sub>''° < 0}} and {{math|Δ''S<sub>p</sub>''° < 0}}, the inequality {{math|{{abs|Δ''H<sub>p</sub>''}} > −''T''Δ''S<sub>p</sub>''}} is required). Therefore, the higher the ring strain, the lower the resulting monomer concentration at [[Chemical equilibrium|equilibrium]]. ==Additional reading== *{{Cite book |title=Expanding Monomers: Synthesis, Characterization, and Applications |title-link=Expanding Monomers |publisher=CRC Press |year=1992 |isbn=978-0-8493-5156-3 |editor-last=Luck |editor-first=Russel M. |editor-last2=Sadhir |editor-first2=Rajender K. |location=Boca Raton, Florida}} *{{cite journal|title=Organocatalytic Ring-Opening Polymerization|author=Nahrain E. Kamber |author2=Wonhee Jeong |author3=Robert M. Waymouth |author4=Russell C. Pratt |author5=Bas G. G. Lohmeijer |author6=James L. Hedrick |journal=Chemical Reviews|year=2007|volume=107|issue=12|pages=5813–5840|doi=10.1021/cr068415b|pmid=17988157}} *{{cite book |title= Handbook of Ring-Opening Polymerization |editor1-first= Philippe |editor1-last= Dubois |editor2-first= Olivier |editor2-last= Coulembier |editor3-first= Jean-Marie |editor3-last= Raquez |publisher= Wiley |year= 2009 |isbn= 9783527628407 |doi= 10.1002/9783527628407 }}<!-- see especially chapter 13 "Polymerization of Cycloalkanes" lead-ref for expanding our article --> == References == <references /> [[Category:Polymerization reactions]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Cite book
(
edit
)
Template:Cite encyclopedia
(
edit
)
Template:Cite journal
(
edit
)
Template:Cn
(
edit
)
Template:Main article
(
edit
)
Template:Math
(
edit
)
Template:Mvar
(
edit
)
Template:Quote box
(
edit
)
Template:Short description
(
edit
)