Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Rodrigues' formula
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Formula for the Legendre polynomials}} {{for|the 3-dimensional rotation formula|Rodrigues' rotation formula}} In [[mathematics]], '''Rodrigues' formula''' (formerly called the '''Ivory–Jacobi formula''') generates the [[Legendre polynomials]]. It was independently introduced by {{harvs|txt|authorlink=Olinde Rodrigues|first=Olinde|last=Rodrigues|year=1816}}, {{harvs|txt|authorlink=James Ivory (mathematician)|first=Sir James|last= Ivory|year=1824}} and {{harvs|txt|authorlink=Carl Gustav Jacob Jacobi|first=Carl Gustav|last=Jacobi|year=1827}}. The name "Rodrigues formula" was introduced by [[Eduard Heine|Heine]] in 1878, after Hermite pointed out in 1865 that Rodrigues was the first to discover it. The term is also used to describe similar formulas for other [[orthogonal polynomials]]. {{harvtxt|Askey|2005}} describes the history of the Rodrigues formula in detail. ==Statement== Let <math>(P_n(x))_{n=0}^\infty</math> be a [[sequence]] of orthogonal polynomials on the interval <math>[a, b]</math> with respect to [[weight function]] <math>w(x)</math>. That is, they have degrees <math>deg(P_n) = n</math>, satisfy the orthogonality condition <math display="block">\int_a^b P_m(x) P_n(x) w(x) \, dx = K_n \delta_{m,n}</math> where <math>K_n</math> are nonzero constants depending on <math>n</math>, and <math>\delta_{m,n}</math> is the [[Kronecker delta]]. The interval <math>[a, b]</math> may be infinite in one or both ends. {{Math theorem | name = Rodrigues' type formula | note = | math_statement = If <math display="block">w(x)=W(x)/B(x), \quad \frac{W'(x)}{W(x)} = \frac{A(x)}{B(x)},</math> where <math>A(x)</math> is a [[polynomial]] with [[degree of a polynomial|degree]] at most 1 and <math>B(x)</math> is a polynomial with degree at most 2, and <math display="block">\lim_{x \to a} x^k W(x) = 0, \qquad \lim_{x \to b} x^k W(x) = 0.</math> for any <math>k = 0, 1, 2, \dots</math>. Then, if <math>\frac{d^n}{dx^n} \!\left[ B(x)^n w(x)\right] \neq 0</math> for all <math>n = 0, 1, 2, \dots</math>, then <math display="block">P_n(x) = \frac{c_n}{w(x)} \frac{d^n}{dx^n} \!\left[ B(x)^n w(x)\right],</math> for some constants <math>c_n</math>. }} {{Math proof|title=Proof|proof= Let <math display="inline">F_k := \frac 1w D_x^k(B^n w)</math>, then <math display="inline">F_k = B^{n-k} p_k</math> for all <math display="inline">k \in 0:n</math> for some polynomials <math display="inline">p_k</math>, such that <math display="inline">deg(p_k) \leq k</math>. Proven by induction on <math display="inline">k</math>: <math display="block"> F_{k+1} = B^{n-k-1}(B p_k' + (n-k)B' p_k + (A-B')p_k) </math> Let <math display="inline">Q_n := \frac 1w D_x^n(B^n w)</math>. We have shown that <math display="inline">Q_n</math> is a polynomial of degree <math>\leq n</math>. With integration by parts, we have for all <math display="inline">n > m</math>, <math display="block"> \int_a^b Q_m Q_n w dx = \int_a^b B^n w (D_x^n Q_m) dx = 0 </math> since <math display="inline">D_x^n Q_m=0</math>. Thus, <math display="inline">Q_0, Q_1, \dots</math> make up an orthogonal polynomial series with respect to <math display="inline">w</math>. Thus, <math display="inline">P_n = c_n Q_n</math> for some constants <math display="inline">c_n</math>. }} {{Math theorem | name = Differential equation | note = | math_statement = <math display="block">B(x) \frac{d^2}{dx^2} P_n(x) + A(x) \frac{d}{dx} P_n(x) + \lambda_n P_n(x) = 0</math> <math display="block">\lambda_n = -\frac{1}{2}n(n-1)B''-nA'</math> }} {{Math proof|title=Proof|proof= When <math>n = 0</math>, it is trivial. When <math>n = 1</math>, it simplifies to <math>AP_1' = A'P_1</math>, which is true since <math>P_1 = \frac{c_1}{w}(Bw)' = c_1A</math>. So assume <math>n \geq 2</math>. Define <math>I_n(x) = \frac{d^n}{dx^n}(B^n(x) w(x))</math>, then by direct computation and simplification, the equation to be proven is equivalent to <math display="block">\frac{d^2}{dx^2} (B(x) I_n(x)) - \frac{d}{dx} (A(x) I_n(x)) + \lambda_n I_n(x) = 0</math> By Leibniz differentiation rule, we have <math display="block">B(x) \frac{d^n}{dx^n} y = \frac{d^n}{dx^n} (B(x) y) - n \frac{d^{n-1}}{dx^{n-1}} (B'(x) y) + \frac{n(n-1)}{2} \frac{d^{n-2}}{dx^{n-2}} (B'' y)</math> <math display="block">A(x) \frac{d^n}{dx^n} y = \frac{d^n}{dx^n} (A(x) y) - n \frac{d^{n-1}}{dx^{n-1}} (A' y)</math> for arbitrary <math>y</math>. This allows us to move <math>A(x), B(x)</math> to the other side of the <math>n</math>-th derivative. Set <math>y = B^n(x) w(x) </math>, and define <math display="block">J(x) = \frac{d^2}{dx^2} (B(x) y(x)) - n \frac{d}{dx} (B'(x) y(x)) + \frac{n(n-1)}{2} B'' y(x)</math> <math display="block">K(x) = -\frac{d}{dx} (A(x) y(x)) + n A' y(x)</math> <math display="block">L(x) = \lambda_n y(x)</math> Then the equation simplifies to <math>\frac{d^n}{dx^n} (J+K + L) = 0</math> <math>J(x)</math> has three terms, call them in order <math>J_1(x), J_2(x), J_3(x)</math>. <math>K(x)</math> has two terms, call them in order <math>K_1(x), K_2(x)</math>. <math>J_3(x) + K_2(x) + L(x) = (\lambda_n + \frac{n(n-1)}{2} B'' + n A')y=0</math>. That <math>J_1(x) + J_2(x) + K_1(x) = 0</math>. follows from first writing <math>J_1(x)</math> as <math>J_1(x) = \frac{d^2}{dx^2} \left(B^n(x) \int \exp\left(\frac{A(x)}{B(x)}\right)dx \right)</math> and then taking the innermost first derivative to obtain <math>J_1(x) = \frac{d}{dx}\left[\bigg(nB'(x)B^{n-1}(x) + A(x)B^{n-1}(x)\bigg)\int \exp\left(\frac{A(x)}{B(x)}\right)dx\right]</math> and then rewriting this as <math>J_1(x) = \frac{d}{dx}\Big(nB'(x)B^{n}(x)w(x)+ A(x)B^{n}(x)w(x)\Big)</math> The first term is the negative of <math>J_2(x)</math> and the second term is the negative of <math>K_1(x)</math>. }} More abstractly, this can be viewed through [[Sturm–Liouville theory]]. Define an operator <math>Lf := - \frac{1}{w} (Wf')'</math>, then the differential equation is equivalent to <math>LP_n = \lambda_n P_n</math>. Define the functional space <math>X = L^2([a,b], w(x)dx)</math> as the Hilbert space of functions over <math>[a, b]</math>, such that <math>\langle f, g\rangle := \int_a^b fgw</math>. Then the operator <math>L</math> is self-adjoint on functions satisfying certain boundary conditions, allowing us to apply the [[spectral theorem]]. == Generating function == A simple argument using [[Cauchy's integral formula]] shows that the orthogonal polynomials obtained from the Rodrigues formula have a [[generating function]] of the form <math display="”block”">G(x,u)=\sum_{n=0}^\infty u^nP_n(x)</math> The <math>P_n(x)</math> functions here may not have the standard normalizations. But we can write this equivalently as <math display="”block”">G(x,u)=\sum_{n=0}^\infty \frac{u^n}{N_n}N_nP_n(x)</math> where the <math>N_n</math> are chosen according to the application so as to give the desired normalizations. The variable u may be replaced by a constant multiple of u so that <math display="”block”">G(x,\alpha u)=\sum_{n=0}^\infty \frac{\alpha^n u^n}{N_n}N_nP_n(x)</math> This gives an alternate form of the generating function. By [[Cauchy's integral formula]], Rodrigues’ formula is equivalent to<math display="block">P_n(x)=\frac{n!}{2\pi i}\frac{c_n}{w(x)}\oint_C \frac{B^n(t) w(t)}{(t-x)^{n+1}}\,dt</math>where the integral is along a counterclockwise closed loop around <math>x</math>. Let <math display=”block”>u=\frac{t-x}{B(t)}</math> Then the complex path integral takes the form <math display=”block”>P_n(x)=\frac{n!}{2\pi i}c_n\oint_C \frac{G(x,u)}{u^{n+1}}\,du</math> <math display=”block”>G(x,u)=\frac{w(t)\frac{dt}{du}}{w(x)B(t)}</math> where now the closed path C encircles the origin. In the equation for <math>G(x,u)</math>, <math>t</math> is an implicit function of <math>u</math>. Expanding <math>G(x,u)</math> in the power series given earlier gives <math>\frac{1}{2\pi i}\oint_C \frac{G(x,u)}{u^{n+1}}\,du=\frac{1}{2\pi i}\oint_C \frac{\sum_{m=0}^\infty u^mP_m(x)}{u^{n+1}}\,du=P_n(x)</math> Only the <math>m=n</math> term has a nonzero residue, which is <math>P_n(x)</math>. The <math>n!\,c_n</math> coefficient was dropped since normalizations are conventions which can be inserted afterwards as discussed earlier. By expressing t in terms of u in the general formula just given for <math>G(x,u)</math>, explicit formulas for <math>G(x,u)</math> may be found. As a simple example, let <math>B(x)=1</math> and <math>A(x)=-x</math> (Hermite polynomials) so that <math>w(x)=\exp\left(-\frac{x^2}{2}\right)</math>, <math>t=u+x</math>, <math>w(t)=\exp\left(-\frac{(u+x)^2}{2}\right)</math> and so <math>G(x,u)=\exp\left(-xu-\frac{u^2}{2}\right)</math>. == Examples == {| class="wikitable" |+ !Family !<math>[a,b]</math> !<math>w</math> !<math>W</math> !<math>A</math> !<math>B</math> !<math>c_n</math> |- |[[Legendre polynomials|Legendre]] <math>P_n</math> |<math>[-1,+1]</math> |<math>1</math> |<math>1-x^2</math> |<math>-2x</math> |<math>1-x^2</math> |<math>\frac{(-1)^n}{2^n n!}</math> |- |[[Chebyshev polynomials|Chebyshev]] (of the first kind) <math>T_n</math> |<math>[-1,+1]</math> |<math>1/\sqrt{1-x^2}</math> |<math>\sqrt{1-x^2}</math> |<math>-x</math> |<math>1-x^2</math> |<math>\frac{(-1)^n}{(2n-1)!!}</math> |- |[[Chebyshev polynomials|Chebyshev]] (of the second kind) <math>U_n</math> |<math>[-1,+1]</math> |<math>\sqrt{1-x^2}</math> |<math>(1-x^2)^{3/2}</math> |<math>-3x</math> |<math>1-x^2</math> |<math>\frac{(-1)^n (n+1)}{(2n+1)!!} </math> |- |[[Gegenbauer polynomials|Gegenbauer/ultraspherical]] <math>C_n^{(\alpha)}(x)</math> |<math>[-1,+1]</math> |<math>(1-x)^{\alpha-1/2} (1+x)^{\alpha-1/2} </math> |<math>(1-x)^{\alpha+1/2} (1+x)^{\alpha+1/2} </math> |<math>-(2\alpha + 1)x </math> |<math>1-x^2</math> |<math>\frac{(-1)^n (2\alpha)_n}{(\alpha+\frac{1}{2})_{n} 2^nn!}</math> |- |[[Jacobi polynomials|Jacobi]] <math>P_n^{(\alpha, \beta)}</math> |<math>[-1,+1]</math> |<math>(1-x)^\alpha (1+x)^\beta</math> |<math>(1-x)^{\alpha+1} (1+x)^{\beta +1}</math> |<math>( \beta - \alpha ) - (\alpha+ \beta + 2) x</math> |<math>1-x^2</math> |<math>\frac{(-1)^n}{2^nn!}</math> |- |associated [[Laguerre polynomials|Laguerre]] <math>L^{(\alpha)}_n</math> |<math>[0, \infty)</math> |<math>x^\alpha e^{-x}</math> |<math>x^{\alpha+1} e^{-x}</math> |<math>\alpha + 1 - x</math> |<math>x</math> |<math>\frac{1}{n!}</math> |- |[[Hermite polynomials|physicist's Hermite]] <math>H_n</math> |<math>(-\infty, +\infty)</math> |<math>e^{-x^2}</math> |<math>e^{-x^2}</math> |<math>-2x</math> |<math>1</math> |<math>(-1)^n</math> |} Similar formulae hold for many other sequences of [[orthogonal functions]] arising from [[Sturm–Liouville equation]]s, and these are also called the Rodrigues formula (or Rodrigues' type formula), especially when the resulting sequence is polynomial. === Legendre === Rodrigues stated his formula for Legendre polynomials <math>P_n</math>: <math display="block">P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} \!\left[ (x^2 -1)^n \right]\!.</math><math display="block">(1 - x^2) P_n''(x) - 2 x P_n'(x) + n (n + 1) P_n(x) = 0</math>For Legendre polynomials, the generating function is defined as <math display="”block”">G(x,u)=\sum_{n=0}^\infty u^nP_n(x)</math>. The contour integral gives the '''Schläfli integral'''<ref>{{Citation |last=Schläfli |first=Ludwig |title=Über die zwei Heineschen Kugelfunktionen mit beliebigem Parameter und ihre ausnahmslose Darstellung durch bestimmte Integrale |date=1881 |work=Gesammelte Mathematische Abhandlungen |pages=317–392 |url=https://doi.org/10.1007/978-3-0348-4116-0_27 |place=Basel |publisher=Springer Basel |isbn=978-3-0348-4044-6}}</ref> for Legendre polynomials:<math display="block">P_n(x) = \frac{1}{2\pi i 2^n} \oint_C \frac{(t^2-1)^n}{(t-x)^{n+1}} dt</math> Summing up the integrand,<math display="block">G(x,u) = \frac{1}{\sqrt{1 - 2ux + u^2}} \frac{1}{2\pi i} \oint_C \left(\frac{1}{t - t_-} - \frac{1}{t - t_+}\right) dt</math>where <math>t_\pm = \frac{1}{u} (1 \pm \sqrt{1 - 2ux + u^2})</math>. For small <math>u</math>, we have <math>t_- \approx x, t_+ \to \infty</math>, which heuristically suggests that the integral should be the residue around <math>t_-</math>, thus giving<math display="block">G(x,u) = \frac{1}{\sqrt{1 - 2ux + u^2}}</math> === Hermite === Physicist's [[Hermite polynomials]]:<math display="block">H_n(x)=(-1)^n e^{x^2} \frac{d^n}{dx^n} \!\left[e^{-x^2}\right] = \left(2x-\frac{d}{dx} \right)^n\cdot 1.</math><math display="block">H_n'' - 2xH_n' + 2nH_n = 0</math> The generating function is defined as<math display="block">G(x,u)=\sum_{n=0}^\infty \frac{H_n(x)}{n!}\, u^n.</math>The contour integral gives<math display="block"> H_n(x)=(-1)^n e^{x^2}\frac{n!}{2\pi i}\oint_C \frac{e^{-t^2}}{(t-x)^{n+1}}\,dt. </math><math display="block"> \begin{aligned} G(x,u) &= \sum_{n=0}^\infty \frac{(-1)^n e^{x^2}}{n!}\frac{n!}{2\pi i}\, u^n \oint_C \frac{e^{-t^2}}{(t-x)^{n+1}}\,dt \\ &= e^{x^2}\frac{1}{2\pi i}\oint_C e^{-t^2}\left(\sum_{n=0}^\infty \frac{(-1)^n u^n}{(t-x)^{n+1}}\right)dt \\ &= e^{x^2}\frac{1}{2\pi i}\oint_C e^{-t^2} \frac{1}{t-x+u}\\ &= e^{x^2}\, e^{-(x-u)^2} \\ & = e^{2xu- u^2} \end{aligned} </math> === Laguerre === For associated [[Laguerre polynomials]],<math display="block">L_n^{(\alpha)}(x) = {x^{-\alpha} e^x \over n!}{d^n \over dx^n} \left(e^{-x} x^{n+\alpha}\right) = \frac{x^{-\alpha}}{n!}\left( \frac{d}{dx}-1\right)^nx^{n+\alpha}.</math><math display="block">xL^{(\alpha)}_n(x)'' + (\alpha + 1 - x)L^{(\alpha)}_n(x)' + nL^{(\alpha)}_n(x) = 0~.</math> The generating function is defined as<math display="block">G(x,u) := \sum_{n=0}^\infty u^n L^{(\alpha)}_n(x)</math>By the same method, we have <math>G(x,u) = \frac{1}{(1-u)^{\alpha+1}} e^{-\frac{ux}{1-u}}</math>. === Jacobi === <math display="block"> P_n^{(\alpha,\beta)}(x) = \frac{(-1)^n}{2^n n!} (1-x)^{-\alpha} (1+x)^{-\beta} \frac{d^n}{dx^n} \left\{ (1-x)^\alpha (1+x)^\beta \left (1 - x^2 \right )^n \right\}.</math><math display="block"> \left (1-x^2 \right)P_n^{(\alpha,\beta)}{}'' + ( \beta-\alpha - (\alpha + \beta + 2)x )P_n^{(\alpha,\beta)}{}' + n(n+\alpha+\beta+1) P_n^{(\alpha,\beta)} = 0.</math> : <math> \sum_{n=0}^\infty P_n^{(\alpha,\beta)}(x) u^n = 2^{\alpha + \beta} R^{-1} (1 - u + R)^{-\alpha} (1 + u + R)^{-\beta}, </math> where <math display="inline"> R = \sqrt{1 - 2ux + u^2} </math>, and the [[Principal branch|branch]] of square root is chosen so that <math>R(x, 0) = 1</math>. ==References== {{Reflist}} *{{Citation | last1=Askey | first1=Richard |authorlink=Richard Askey| editor1-last=Altmann | editor1-first=Simón L. | editor2-last=Ortiz | editor2-first=Eduardo L. | title=Mathematics and social utopias in France: Olinde Rodrigues and his times | chapter-url=https://books.google.com/books?id=oTyJYUx8Jr4C&pg=PA105 | publisher=[[American Mathematical Society]] | location=Providence, R.I. | series= History of mathematics | isbn=978-0-8218-3860-0 | year=2005 | volume=28 | chapter=The 1839 paper on permutations: its relation to the Rodrigues formula and further developments | pages=105–118}} *{{citation | title = On the Figure Requisite to Maintain the Equilibrium of a Homogeneous Fluid Mass That Revolves Upon an Axis | last=Ivory|first= James | journal = Philosophical Transactions of the Royal Society of London | volume = 114 | year=1824 | pages = 85–150 | jstor = 107707 | publisher = The Royal Society | doi=10.1098/rstl.1824.0008 | doi-access = free }} *{{Citation | last1=Jacobi | first1=C. G. J. | title=Ueber eine besondere Gattung algebraischer Functionen, die aus der Entwicklung der Function (1 − 2''xz'' + ''z''<sup>2</sup>)<sup>1/2</sup> entstehen. | language=German | doi=10.1515/crll.1827.2.223 | year=1827 | journal=Journal für die Reine und Angewandte Mathematik | issn=0075-4102 | volume=2 | pages=223–226| s2cid=120291793 | url=https://zenodo.org/record/1448810 }} *{{MacTutor|id=Rodrigues|title=Olinde Rodrigues}} *{{citation|first=Olinde|last= Rodrigues|authorlink=Olinde Rodrigues|series=(Thesis for the Faculty of Science of the University of Paris)|title=De l'attraction des sphéroïdes|journal=Correspondence sur l'École Impériale Polytechnique|volume=3|issue=3|year=1816|pages= 361–385|url = https://books.google.com/books?id=dp4AAAAAYAAJ&pg=PA361}} [[Category:Orthogonal polynomials]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Citation
(
edit
)
Template:For
(
edit
)
Template:Harvs
(
edit
)
Template:Harvtxt
(
edit
)
Template:MacTutor
(
edit
)
Template:Math proof
(
edit
)
Template:Math theorem
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)