Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Rotation operator (quantum mechanics)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{short description|Quantum operator}} {{Other uses|Rotation operator (disambiguation)}} {{Quantum mechanics}} This article concerns the '''[[rotation]] [[Operator (physics)|operator]]''', as it appears in [[quantum mechanics]]. ==Quantum mechanical rotations== With every physical rotation <math>R</math>, we postulate a quantum mechanical rotation operator <math>\widehat{D}(R) : H\to H</math> that is the rule that assigns to each vector in the space <math>H </math> the vector <math display="block">| \alpha \rangle_R = \widehat{D}(R) |\alpha \rangle</math> that is also in <math>H</math>. We will show that, in terms of the generators of rotation, <math display="block">\widehat{D} (\mathbf{\hat n},\phi) = \exp \left( -i \phi \frac{\mathbf{\hat n} \cdot \widehat{\mathbf J }}{ \hbar} \right),</math> where <math>\mathbf{\hat n}</math> is the rotation axis, <math> \widehat{\mathbf{J}} </math> is [[Angular momentum operator|angular momentum]] operator, and <math>\hbar</math> is the [[reduced Planck constant]]. ==The translation operator== {{Main|Translation operator (quantum mechanics)}} The [[rotation]] [[Operator (physics)|operator]] <math>\operatorname{R}(z, \theta)</math>, with the first argument <math>z</math> indicating the rotation [[Cartesian coordinate system|axis]] and the second <math>\theta</math> the rotation angle, can operate through the [[Displacement operator|translation operator]] <math>\operatorname{T}(a)</math> for infinitesimal rotations as explained below. This is why, it is first shown how the translation operator is acting on a particle at position x (the particle is then in the [[quantum state|state]] <math>|x\rangle</math> according to [[Quantum Mechanics]]). Translation of the particle at position <math>x</math> to position <math>x + a</math>: <math>\operatorname{T}(a)|x\rangle = |x + a\rangle</math> Because a translation of 0 does not change the position of the particle, we have (with 1 meaning the [[identity function|identity operator]], which does nothing): <math display="block">\operatorname{T}(0) = 1</math> <math display="block">\operatorname{T}(a) \operatorname{T}(da)|x\rangle = \operatorname{T}(a)|x + da\rangle = |x + a + da\rangle = \operatorname{T}(a + da)|x\rangle \Rightarrow \operatorname{T}(a) \operatorname{T}(da) = \operatorname{T}(a + da)</math> [[Taylor series|Taylor]] development gives: <math display="block">\operatorname{T}(da) = \operatorname{T}(0) + \frac{d\operatorname{T}(0)}{da} da + \cdots = 1 - \frac{i}{\hbar} p_x da</math> with <math display="block">p_x = i \hbar \frac{d\operatorname{T}(0)}{da}</math> From that follows: <math display="block">\operatorname{T}(a + da) = \operatorname{T}(a) \operatorname{T}(da) = \operatorname{T}(a)\left(1 - \frac{i}{\hbar} p_x da\right) \Rightarrow \frac{\operatorname{T}(a + da) - \operatorname{T}(a)}{da} = \frac{d\operatorname{T}}{da} = - \frac{i}{\hbar} p_x \operatorname{T}(a)</math> This is a [[differential equation]] with the solution <math display="block">\operatorname{T}(a) = \exp\left(- \frac{i}{\hbar} p_x a\right).</math> Additionally, suppose a [[Hamiltonian_(quantum_mechanics)|Hamiltonian]] <math>H</math> is independent of the <math>x</math> position. Because the translation operator can be written in terms of <math>p_x</math>, and <math>[p_x,H] = 0</math>, we know that <math>[H, \operatorname{T}(a)]=0.</math> This result means that linear [[momentum]] for the system is conserved. ==In relation to the orbital angular momentum== {{Further|Bloch sphere#Rotations}} Classically we have for the [[angular momentum]] <math>\mathbf L = \mathbf r \times \mathbf p.</math> This is the same in [[quantum mechanics]] considering <math>\mathbf r</math> and <math>\mathbf p</math> as operators. Classically, an infinitesimal rotation <math>dt</math> of the vector <math>\mathbf r = (x,y,z)</math> about the <math>z</math>-axis to <math>\mathbf r' = (x',y',z)</math> leaving <math>z</math> unchanged can be expressed by the following infinitesimal translations (using [[Taylor series|Taylor approximation]]): <math display="block">\begin{align} x' &= r \cos(t + dt) = x - y \, dt + \cdots \\ y' &= r \sin(t + dt) = y + x \, dt + \cdots \end{align}</math> From that follows for states: <math display="block">\operatorname{R}(z, dt)|r\rangle = \operatorname{R}(z, dt)|x, y, z\rangle = |x - y \, dt, y + x \, dt, z\rangle = \operatorname{T}_x(-y \, dt) \operatorname{T}_y(x \, dt)|x, y, z\rangle = \operatorname{T}_x(-y \, dt) \operatorname{T}_y(x \, dt) |r\rangle</math> And consequently: <math display="block">\operatorname{R}(z, dt) = \operatorname{T}_x (-y \, dt) \operatorname{T}_y(x \, dt)</math> Using <math display="block">T_k(a) = \exp\left(- \frac{i}{\hbar} p_k a\right)</math> from above with <math>k = x,y</math> and Taylor expansion we get: <math display="block">\operatorname{R}(z,dt)=\exp\left[-\frac{i}{\hbar} \left(x p_y - y p_x\right) dt\right] = \exp\left(-\frac{i}{\hbar} L_z dt\right) = 1-\frac{i}{\hbar}L_z dt + \cdots</math> with <math>L_z = x p_y - y p_x</math> the <math>z</math>-component of the angular momentum according to the classical [[cross product]]. To get a rotation for the angle <math>t</math>, we construct the following differential equation using the condition <math>\operatorname{R}(z, 0) = 1 </math>: <math display="block">\begin{align} &\operatorname{R}(z, t + dt) = \operatorname{R}(z, t) \operatorname{R}(z, dt) \\[1.1ex] \Rightarrow {} & \frac{d\operatorname{R}}{dt} = \frac{\operatorname{R}(z, t + dt) - \operatorname{R}(z, t)}{dt} = \operatorname{R}(z, t) \frac{\operatorname{R}(z, dt) - 1}{dt} = - \frac{i}{\hbar} L_z \operatorname{R}(z, t) \\[1.1ex] \Rightarrow {}& \operatorname{R}(z, t) = \exp\left(- \frac{i}{\hbar}\, t \, L_z\right) \end{align}</math> Similar to the translation operator, if we are given a Hamiltonian <math>H</math> which rotationally symmetric about the <math>z</math>-axis, <math>[L_z,H]=0</math> implies <math>[\operatorname{R}(z,t),H]=0</math>. This result means that angular momentum is conserved. For the spin angular momentum about for example the <math>y</math>-axis we just replace <math>L_z</math> with <math display="inline">S_y = \frac{\hbar}{2} \sigma_y</math> (where <math>\sigma_y</math> is the [[Pauli matrices|Pauli Y matrix]]) and we get the [[Spin (physics)|spin]] rotation operator <math display="block">\operatorname{D}(y, t) = \exp\left(- i \frac{t}{2} \sigma_y\right).</math> ==Effect on the spin operator and quantum states== {{Main|Spin (physics)#Rotations}} {{see also|Rotation group SO(3)#A note on Lie algebra|Change of basis#Endomorphisms}} Operators can be represented by [[Matrix (mathematics)|matrices]]. From [[linear algebra]] one knows that a certain matrix <math>A</math> can be represented in another [[basis (linear algebra)|basis]] through the transformation <math display="block">A' = P A P^{-1}</math> where <math>P</math> is the basis transformation matrix. If the vectors <math>b</math> respectively <math>c</math> are the z-axis in one basis respectively another, they are perpendicular to the y-axis with a certain angle <math>t</math> between them. The spin operator <math>S_b</math> in the first basis can then be transformed into the spin operator <math>S_c</math> of the other basis through the following transformation: <math display="block">S_c = \operatorname{D}(y, t) S_b \operatorname{D}^{-1}(y, t)</math> From standard quantum mechanics we have the known results <math display="inline">S_b |b+\rangle = \frac{\hbar}{2} |b+\rangle</math> and <math display="inline">S_c |c+\rangle = \frac{\hbar}{2} |c+\rangle</math> where <math>|b+\rangle</math> and <math>|c+\rangle</math> are the top spins in their corresponding bases. So we have: <math display="block">\frac{\hbar}{2} |c+\rangle = S_c |c+\rangle = \operatorname{D}(y, t) S_b \operatorname{D}^{-1}(y, t) |c+\rangle \Rightarrow</math> <math display="block">S_b \operatorname{D}^{-1}(y, t) |c+\rangle = \frac{\hbar}{2} \operatorname{D}^{-1}(y, t) |c+\rangle</math> Comparison with <math display="inline">S_b |b+\rangle = \frac{\hbar}{2} |b+\rangle</math> yields <math>|b+\rangle = D^{-1}(y, t) |c+\rangle</math>. This means that if the state <math>|c+\rangle</math> is rotated about the <math>y</math>-axis by an angle <math>t</math>, it becomes the state <math>|b+\rangle</math>, a result that can be generalized to arbitrary axes. ==See also== *[[Symmetry in quantum mechanics]] *[[Spherical basis]] *[[Optical phase space]] ==References== *L.D. Landau and E.M. Lifshitz: ''Quantum Mechanics: Non-Relativistic Theory'', Pergamon Press, 1985 *P.A.M. Dirac: ''The Principles of Quantum Mechanics'', Oxford University Press, 1958 *R.P. Feynman, R.B. Leighton and M. Sands: ''The Feynman Lectures on Physics'', Addison-Wesley, 1965 {{Physics operator}} {{DEFAULTSORT:Rotation Operator (Quantum Mechanics)}} [[Category:Rotational symmetry]] [[Category:Quantum operators]] [[Category:Unitary operators]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Further
(
edit
)
Template:Main
(
edit
)
Template:Other uses
(
edit
)
Template:Physics operator
(
edit
)
Template:Quantum mechanics
(
edit
)
Template:See also
(
edit
)
Template:Short description
(
edit
)