Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Roton
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Collective excitation in superfluid helium-4 (a quasiparticle)}} {{Other uses}} [[File:RotonDispersionRelation.svg|thumb|Roton dispersion relation, showing the quasiparticle energy E(p) as a function of momentum p. A quasiparticle with momentum generated in the local energy minimum is called a roton.]] In [[theoretical physics]], a '''roton''' is an elementary excitation, or [[quasiparticle]], seen in [[superfluid helium-4]] and [[Bose–Einstein condensate]]s with long-range [[Dipole|dipolar interactions]] or [[Spin–orbit interaction|spin-orbit coupling]]. The [[dispersion relation]] of elementary excitations in this [[superfluid]] shows a [[linear]] increase from the origin, but exhibits first a maximum and then a minimum in [[energy]] as the [[momentum]] increases. Excitations with momenta in the linear region are called [[phonon]]s; those with momenta close to the minimum are called rotons. Excitations with momenta near the maximum are called [[Maxon excitation|maxon]]s. The term "roton-like" is also used for the predicted [[Eigenmode|eigenmodes]] in 3D [[Metamaterial|metamaterials]] using beyond-nearest-neighbor coupling.<ref>{{cite journal |last1=Wang |first1=Ke |last2=Chen |first2=Yi |last3=Kadic |first3=Muamer |last4=Wang |first4=Changguo |last5=Wegener |first5=Martin |date=24 May 2022 |title=Nonlocal interaction engineering of 2D roton-like dispersion relations in acoustic and mechanical metamaterials |journal=Communications Materials |volume=3 |issue=1 |page=35 |bibcode=2022CoMat...3...35W |doi=10.1038/s43246-022-00257-z |doi-access=free |s2cid=248991736}}</ref><ref>{{cite journal |last1=Chen |first1=Yi |last2=Kadic |first2=Muamer |last3=Wegener |first3=Martin |date=2 June 2021 |title=Roton-like acoustical dispersion relations in 3D metamaterials |journal=Nature Communications |volume=12 |issue=1 |pages=3278 |bibcode=2021NatCo..12.3278C |doi=10.1038/s41467-021-23574-2 |pmc=8172548 |pmid=34078904}}</ref> The observation of such a "roton-like" dispersion relation was demonstrated under ambient conditions for both acoustic pressure waves in a channel-based metamaterial at audible frequencies and transverse elastic waves in a microscale metamaterial at ultrasound frequencies.<ref>{{Cite journal |last1=Iglesias Martínez |first1=Julio Andrés |last2=Groß |first2=Michael Fidelis |last3=Chen |first3=Yi |last4=Frenzel |first4=Tobias |last5=Laude |first5=Vincent |last6=Kadic |first6=Muamer |last7=Wegener |first7=Martin |date=2021-12-03 |title=Experimental observation of roton-like dispersion relations in metamaterials |journal=Science Advances |language=en |volume=7 |issue=49 |pages=eabm2189 |doi=10.1126/sciadv.abm2189 |issn=2375-2548 |pmc=8635434 |pmid=34851658|bibcode=2021SciA....7.2189I }}</ref> ==Models== Originally, the roton spectrum was phenomenologically introduced by [[Lev Landau]] in 1947.<ref>Landau, L. D. (1947). On the theory of superfluidity of helium II. Physics-Uspekhi, 11(1), 91.</ref> Currently there exist [[Superfluid helium-4#Theory|models]] which try to explain the roton spectrum with varying degrees of success and fundamentality.<ref>{{Cite journal|title = Fingerprinting Rotons in a Dipolar Condensate: Super-Poissonian Peak in the Atom-Number Fluctuations|date = 26 June 2013|journal = Phys. Rev. Lett. |volume=110 |page=265302|doi = 10.1103/PhysRevLett.110.265302|arxiv = 1304.3605 |bibcode = 2013PhRvL.110z5302B |last1 = Bisset|first1 = R. N.|last2 = Blakie|first2 = P. B.|issue = 26|pmid = 23848891|s2cid = 24788775}}</ref><ref>{{Cite journal|title = Roton spectroscopy in a harmonically trapped dipolar Bose–Einstein condensate|date = Aug 15, 2012|journal = Phys. Rev. A |volume=86 |pages=021604 |doi = 10.1103/PhysRevA.86.021604|arxiv = 1206.2770 |bibcode = 2012PhRvA..86b1604B |last1 = Blakie|first1 = P. B.|last2 = Baillie|first2 = D.|last3 = Bisset|first3 = R. N.|issue = 2|s2cid = 119285430}}</ref> The requirement for any model of this kind is that it must explain not only the shape of the spectrum itself but also other related observables, such as the [[speed of sound]] and [[structure factor]] of [[superfluid helium-4]]. Microwave and Bragg spectroscopy has been conducted on helium to study the roton spectrum.<ref>{{Cite journal|title = Microwave Spectroscopy of Condensed Helium at the Roton Frequency|date = 4 Nov 2009|journal = Journal of Low Temperature Physics|doi = 10.1007/s10909-009-0025-6|bibcode = 2010JLTP..158..244R |last1 = Rybalko|first1 = A.|last2 = Rubets|first2 = S.|last3 = Rudavskii|first3 = E.|last4 = Tikhiy|first4 = V.|last5 = Poluectov|first5 = Y.|last6 = Golovashchenko|first6 = R.|last7 = Derkach|first7 = V.|last8 = Tarapov|first8 = S.|last9 = Usatenko|first9 = O.|volume = 158|issue = 1–2|pages = 244–249|s2cid = 120191282}}</ref> ==Bose–Einstein condensation== [[Bose–Einstein condensation of quasiparticles|Bose–Einstein condensation]] of rotons has been also proposed and studied.<ref>{{Cite journal|title = The role of the condensate in the existence of phonons and rotons|date = December 1993|journal = Journal of Low Temperature Physics|doi = 10.1007/BF00692035|bibcode = 1993JLTP...93..861G |last1 = Glyde|first1 = Henry R.|volume = 93|issue = 5–6|pages = 861–878|s2cid = 122151606}}</ref> Its first detection has been reported in 2018.<ref>{{cite journal|last1=Chomaz|first1=L.|title=Observation of roton mode population in a dipolar quantum gas|journal=Nature Physics|date=2018|volume=14|issue=5|pages=442–446|doi=10.1038/s41567-018-0054-7|pmid=29861780|pmc=5972007|arxiv=1705.06914|bibcode=2018NatPh..14..442C}}</ref> Under specific conditions the roton minimum gives rise to a crystal solid-like structure called the [[supersolid]], as shown in experiments from 2019.<ref>{{cite journal |last1=Donner |first1=Tobias |title=Dipolar Quantum Gases go Supersolid |journal=Physics |date=3 April 2019 |volume=12 |pages=38 |doi=10.1103/Physics.12.38 |bibcode=2019PhyOJ..12...38D |doi-access=free }}</ref><ref>{{cite web | url=https://phys.org/news/2019-04-teams-independently-dipolar-quantum-gasses.html | title=Three teams independently show dipolar quantum gasses support state of supersolid properties }}</ref><ref>{{cite journal |last1=Henkel |first1=N. |last2=Nath |first2=R. |last3=Pohl |first3=T. |title=Three-Dimensional Roton Excitations and Supersolid Formation in Rydberg-Excited Bose-Einstein Condensates |journal=Physical Review Letters |date=11 May 2010 |volume=104 |issue=19 |pages=195302 |doi=10.1103/PhysRevLett.104.195302 |pmid=20866972 |arxiv=1001.3250 |bibcode=2010PhRvL.104s5302H |s2cid=14445701 }}</ref> ==See also== * [[Superfluid]] * [[Macroscopic quantum phenomena]] * [[Bose–Einstein condensate]] ==References== {{Reflist}} == Bibliography == * {{cite journal |last1=Feynman |first1=R. P. |title=Superfluidity and Superconductivity |journal=Reviews of Modern Physics |date=1 April 1957 |volume=29 |issue=2 |pages=205–212 |doi=10.1103/RevModPhys.29.205 |bibcode=1957RvMP...29..205F |url=https://authors.library.caltech.edu/43047/ |access-date=1 July 2022 |archive-date=29 June 2023 |archive-url=https://web.archive.org/web/20230629192419/https://authors.library.caltech.edu/43047/ |url-status=dead }} {{particles}} {{Authority control}} [[Category:Quasiparticles]] [[Category:Bose–Einstein condensates]] [[Category:Superfluidity]] [[Category:Lev Landau]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Authority control
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite web
(
edit
)
Template:Other uses
(
edit
)
Template:Particles
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)