Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Row and column vectors
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{short description|Matrix consisting of a single row or column}} {{more footnotes|date=November 2022}} In [[linear algebra]], a '''column vector''' with {{tmath|m}} elements is an <math>m \times 1</math> [[Matrix_(mathematics)|matrix]]<ref name="Artin">{{cite book |last1=Artin |first1=Michael |title=Algebra |date=1991 |publisher=Prentice-Hall |location=Englewood Cliffs, NJ |isbn=0-13-004763-5 |page=2}}</ref> consisting of a single column of {{tmath|m}} entries, for example, <math display="block">\boldsymbol{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix}.</math> Similarly, a '''row vector''' is a <math>1 \times n</math> matrix for some {{tmath|n}}, consisting of a single row of {{tmath|n}} entries, <math display="block">\boldsymbol a = \begin{bmatrix} a_1 & a_2 & \dots & a_n \end{bmatrix}. </math> (Throughout this article, boldface is used for both row and column vectors.) The [[transpose]] (indicated by {{math|T}}) of any row vector is a column vector, and the transpose of any column vector is a row vector: <math display="block">\begin{bmatrix} x_1 \; x_2 \; \dots \; x_m \end{bmatrix}^{\rm T} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix}</math> and <math display="block">\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix}^{\rm T} = \begin{bmatrix} x_1 \; x_2 \; \dots \; x_m \end{bmatrix}.</math> The set of all row vectors with {{mvar|n}} entries in a given [[field (mathematics)|field]] (such as the [[real numbers]]) forms an {{mvar|n}}-dimensional [[vector space]]; similarly, the set of all column vectors with {{mvar|m}} entries forms an {{mvar|m}}-dimensional vector space. The space of row vectors with {{mvar|n}} entries can be regarded as the [[dual space]] of the space of column vectors with {{mvar|n}} entries, since any linear functional on the space of column vectors can be represented as the left-multiplication of a unique row vector. == Notation == To simplify writing column vectors in-line with other text, sometimes they are written as row vectors with the transpose operation applied to them. <math display="block">\boldsymbol{x} = \begin{bmatrix} x_1 \; x_2 \; \dots \; x_m \end{bmatrix}^{\rm T}</math> or <math display="block">\boldsymbol{x} = \begin{bmatrix} x_1, x_2, \dots, x_m \end{bmatrix}^{\rm T}</math> Some authors also use the convention of writing both column vectors and row vectors as rows, but separating row vector elements with [[comma]]s and column vector elements with [[semicolon]]s (see alternative notation 2 in the table below).{{fact|date=March 2021}} {| class="wikitable" |- ! !! Row vector !! Column vector |- | '''Standard matrix notation'''<br/>(array spaces, no commas, transpose signs) | align=center| <math> \begin{bmatrix} x_1 \; x_2 \; \dots \; x_m \end{bmatrix} </math> | align=center| <math> \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix} \text{ or } \begin{bmatrix} x_1 \; x_2 \; \dots \; x_m \end{bmatrix}^{\rm T} </math> |- | '''Alternative notation 1'''<br/>(commas, transpose signs) | align=center| <math> \begin{bmatrix} x_1, x_2, \dots, x_m \end{bmatrix} </math> | align=center| <math> \begin{bmatrix} x_1, x_2, \dots, x_m \end{bmatrix}^{\rm T} </math> |- | '''Alternative notation 2'''<br/>(commas and semicolons, no transpose signs) | align=center| <math> \begin{bmatrix} x_1, x_2, \dots, x_m \end{bmatrix} </math> | align=center| <math> \begin{bmatrix} x_1; x_2; \dots; x_m \end{bmatrix} </math> |} == Operations == [[Matrix multiplication]] involves the action of multiplying each row vector of one matrix by each column vector of another matrix. The [[dot product]] of two column vectors {{math|'''a''', '''b'''}}, considered as elements of a coordinate space, is equal to the matrix product of the transpose of {{math|'''a'''}} with {{math|'''b'''}}, <math display="block">\mathbf{a} \cdot \mathbf{b} = \mathbf{a}^\intercal \mathbf{b} = \begin{bmatrix} a_1 & \cdots & a_n \end{bmatrix} \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix} = a_1 b_1 + \cdots + a_n b_n \,, </math> By the symmetry of the dot product, the [[dot product]] of two column vectors {{math|'''a''', '''b'''}} is also equal to the matrix product of the transpose of {{math|'''b'''}} with {{math|'''a'''}}, <math display="block">\mathbf{b} \cdot \mathbf{a} = \mathbf{b}^\intercal \mathbf{a} = \begin{bmatrix} b_1 & \cdots & b_n \end{bmatrix}\begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix} = a_1 b_1 + \cdots + a_n b_n\,. </math> The matrix product of a column and a row vector gives the [[outer product]] of two vectors {{math|'''a''', '''b'''}}, an example of the more general [[tensor product]]. The matrix product of the column vector representation of {{math|'''a'''}} and the row vector representation of {{math|'''b'''}} gives the components of their dyadic product, <math display="block">\mathbf{a} \otimes \mathbf{b} = \mathbf{a} \mathbf{b}^\intercal = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix}\begin{bmatrix} b_1 & b_2 & b_3 \end{bmatrix} = \begin{bmatrix} a_1 b_1 & a_1 b_2 & a_1 b_3 \\ a_2 b_1 & a_2 b_2 & a_2 b_3 \\ a_3 b_1 & a_3 b_2 & a_3 b_3 \\ \end{bmatrix} \,, </math> which is the [[transpose]] of the matrix product of the column vector representation of {{math|'''b'''}} and the row vector representation of {{math|'''a'''}}, <math display="block">\mathbf{b} \otimes \mathbf{a} = \mathbf{b} \mathbf{a}^\intercal = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}\begin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix} = \begin{bmatrix} b_1 a_1 & b_1 a_2 & b_1 a_3 \\ b_2 a_1 & b_2 a_2 & b_2 a_3 \\ b_3 a_1 & b_3 a_2 & b_3 a_3 \\ \end{bmatrix} \,. </math> ==Matrix transformations== {{main|Transformation matrix}} An {{math|''n'' Γ ''n''}} matrix {{mvar|M}} can represent a [[linear map]] and act on row and column vectors as the linear map's [[transformation matrix]]. For a row vector {{math|'''v'''}}, the product {{math|'''v'''''M''}} is another row vector {{math|'''p'''}}: <math display="block">\mathbf{v} M = \mathbf{p} \,.</math> Another {{math|''n'' Γ ''n''}} matrix {{mvar|Q}} can act on {{math|'''p'''}}, <math display="block"> \mathbf{p} Q = \mathbf{t} \,. </math> Then one can write {{math|1='''t''' = '''p'''''Q'' = '''v'''''MQ''}}, so the [[matrix product]] transformation {{mvar|MQ}} maps {{math|'''v'''}} directly to {{math|'''t'''}}. Continuing with row vectors, matrix transformations further reconfiguring {{mvar|n}}-space can be applied to the right of previous outputs. When a column vector is transformed to another column vector under an {{math|''n'' Γ ''n''}} matrix action, the operation occurs to the left, <math display="block"> \mathbf{p}^\mathrm{T} = M \mathbf{v}^\mathrm{T} \,,\quad \mathbf{t}^\mathrm{T} = Q \mathbf{p}^\mathrm{T},</math> leading to the algebraic expression {{math|''QM'' '''v'''<sup>T</sup>}} for the composed output from {{math|'''v'''<sup>T</sup>}} input. The matrix transformations mount up to the left in this use of a column vector for input to matrix transformation. == See also == * [[Covariance and contravariance of vectors]] * [[Index notation]] * [[Vector of ones]] * [[Single-entry vector]] * [[Standard unit vector]] * [[Unit vector]] == Notes == {{reflist}} == References == {{see also|Linear algebra#Further reading}} * {{Citation | last = Axler | first = Sheldon Jay | date = 1997 | title = Linear Algebra Done Right | publisher = Springer-Verlag | edition = 2nd | isbn = 0-387-98259-0 }} * {{Citation | last = Lay | first = David C. | date = August 22, 2005 | title = Linear Algebra and Its Applications | publisher = Addison Wesley | edition = 3rd | isbn = 978-0-321-28713-7 }} * {{Citation |last = Meyer |first = Carl D. |date = February 15, 2001 |title = Matrix Analysis and Applied Linear Algebra |publisher = Society for Industrial and Applied Mathematics (SIAM) |isbn = 978-0-89871-454-8 |url = http://www.matrixanalysis.com/DownloadChapters.html |url-status = dead |archive-url = https://web.archive.org/web/20010301161440/http://matrixanalysis.com/DownloadChapters.html |archive-date = March 1, 2001 }} * {{Citation | last = Poole | first = David | date = 2006 | title = Linear Algebra: A Modern Introduction | publisher = Brooks/Cole | edition = 2nd | isbn = 0-534-99845-3 }} * {{Citation | last = Anton | first = Howard | date = 2005 | title = Elementary Linear Algebra (Applications Version) | publisher = Wiley International | edition = 9th }} * {{Citation | last = Leon | first = Steven J. | date = 2006 | title = Linear Algebra With Applications | publisher = Pearson Prentice Hall | edition = 7th }} {{Linear algebra}} [[Category:Linear algebra]] [[Category:Matrices (mathematics)]] [[Category:Vectors (mathematics and physics)]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Citation
(
edit
)
Template:Cite book
(
edit
)
Template:Fact
(
edit
)
Template:Linear algebra
(
edit
)
Template:Main
(
edit
)
Template:Math
(
edit
)
Template:More footnotes
(
edit
)
Template:Mvar
(
edit
)
Template:Navbox
(
edit
)
Template:Reflist
(
edit
)
Template:See also
(
edit
)
Template:Short description
(
edit
)
Template:Tmath
(
edit
)