Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Satellite modem
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Type of modem}} {{no footnotes|date=October 2012}} A '''satellite modem''' or '''satmodem''' is a [[modem]] used to establish [[data transfer]]s using a [[communications satellite]] as a [[relay]]. A satellite modem's main function is to transform an input bitstream to a radio signal and vice versa. There are some devices that include only a demodulator (and no modulator, thus only allowing data to be downloaded by satellite) that are also referred to as "satellite modems." These devices are used in [[satellite Internet access]] (in this case uploaded data is transferred through a conventional [[PSTN]] modem or an [[ADSL]] modem). == Satellite link == {{Main|Satellite link}} A satellite modem is not the only device needed to establish a communication channel. Other equipment that is essential for creating a satellite link include [[satellite antenna]]s and frequency converters. Data to be transmitted are transferred to a modem from [[data terminal equipment]] (e.g. a [[computer]]). The modem usually has [[intermediate frequency]] (IF) output (that is, 50-200 MHz), however, sometimes the signal is modulated directly to [[L band]]. In most cases, frequency has to be converted using an [[Block upconverter|upconverter]] before amplification and transmission. A modulated signal is a sequence of ''symbols'', pieces of data represented by a corresponding signal state, e.g. a bit or a few bits, depending upon the [[modulation]] scheme being used. Recovering a symbol clock (making a local symbol clock generator synchronous with the remote one) is one of the most important tasks of a demodulator. Similarly, a signal received from a satellite is firstly [[downconverter|downconverted]] (this is done by a [[Low-noise block converter]] - LNB), then demodulated by a modem, and at last handled by data terminal equipment. The LNB is usually powered by the modem through the signal cable with 13 or 18 V [[Direct current|DC]]. == Features == The main functions of a satellite modem are modulation and demodulation. Satellite communication standards also define [[error correction]] codes and [[framing (World Wide Web)|framing]] formats. Popular modulation types being used for satellite communications: * Binary phase-shift keying ([[BPSK]]); * Quadrature phase-shift keying ([[QPSK]]); * Offset quadrature phase-shift keying ([[OQPSK]]); * [[8PSK]]; * [[Quadrature amplitude modulation]] (QAM), especially 16QAM. The popular satellite error correction codes include: * [[Convolutional code]]s: ** with [[constraint length]] less than 10, usually decoded using a [[Viterbi algorithm]] (see [[Viterbi decoder]]); ** with [[constraint length]] more than 10, usually decoded using a [[Fano algorithm]] (see [[Sequential decoder]]); * [[Reed–Solomon error correction|Reed–Solomon]] codes usually concatenated with convolutional codes with an [[forward error correction#Interleaving|interleaving]]; * New modems support superior error correction codes ([[turbo code]]s and [[LDPC]] codes). Frame formats that are supported by various satellite modems include: * Intelsat business service (IBS) framing * Intermediate data rate (IDR) framing * [[MPEG-2]] transport framing (used in [[Digital Video Broadcasting|DVB]]) * [[E-carrier|E1]] and [[Digital Signal 1|T1]] framing [[High-end]] modems also incorporate some additional features: * Multiple data interfaces (like [[RS-232]], [[RS-422]], [[V.35 (recommendation)|V.35]], [[G.703]], [[LVDS]], [[Ethernet]]); * ''Embedded Distant-end Monitor and Control'' (EDMAC), allowing to control the distant-end modem; * ''Automatic Uplink Power Control'' (AUPC), that is, adjusting the output power to maintain a constant [[signal-to-noise ratio|signal to noise]] ratio at the remote end; * [[Drop and insert]] feature for a [[multiplexing|multiplexed]] stream, allowing to replace some channels in it. == Internal structure == [[File:Satellite modem block diagram.png|right|thumb|500px|Satellite modem's internal structure]] Probably the best way of understanding how a modem works is to look at its internal structure. A block diagram of a generic satellite modem is shown on the image. === Analog tract === After a [[digital-to-analog conversion]] in the transmitter, the signal passes through a [[reconstruction filter]]. Then, if needed, frequency conversion is performed. The purpose of the analog tract in the receiver is to convert signal's frequency, to adjust its power via an [[automatic gain control]] circuit and to get its [[complex envelope]] components. The input signal for the analog tract is at the [[intermediate frequency]], sometimes, in the [[L band]], in which case it must be converted to an IF. Then the signal is either [[Sampling (signal processing)|sampled]] or processed by the four-quadrant multiplier which produces the complex envelope components (''[[I and Q|I, Q]]'') through multiplying it by the heterodyne frequency (see [[superheterodyne receiver]]). At last the signal passes through an [[anti-aliasing filter]] and is '''[[sampling (signal processing)|sampled]]''' or ('''digitized'''). === Modulator and demodulator === A digital modulator transforms a digital stream into a radio signal at the intermediate frequency (IF). A modulator is generally simpler than a demodulator because it doesn't have to recover symbol and carrier frequencies. A demodulator is one of the most important parts of the receiver. The exact structure of the demodulator is defined by a [[modulation]] type. However, the fundamental concepts are similar. Moreover, it is possible to develop a demodulator that can process signals with different modulation types. Digital demodulation implies that a ''symbol clock'' (and, in most cases, an intermediate frequency generator) at the receiving side has to be synchronous with those at the transmitting side. This is achieved by the following two circuits: * timing recovery circuit, determining the borders of symbols; * carrier recovery circuit, which determines the actual meaning of each symbol. There are modulation types (like [[frequency-shift keying]]) that can be demodulated without carrier recovery, however, this method, known as ''noncoherent demodulation'', is generally worse. There are also additional components in the demodulator such as the [[intersymbol interference]] [[Equalization (communications)|equalizer]]. If the analog signal was digitized without a four-quadrant multiplier, the complex envelope has to be calculated by a digital ''complex mixer''. Sometimes a digital [[automatic gain control]] circuit is implemented in the demodulator. === FEC coding === [[Error correction]] techniques are essential for satellite communications, because, due to satellite's limited power a [[signal-to-noise ratio|signal-to-noise]] ratio at the receiver is usually rather poor. Error correction works by adding an artificial redundancy to a data stream at the transmitting side and using this redundancy to correct errors caused by noise and interference. This is performed by an ''FEC encoder.'' The encoder applies an error correction code to the digital stream, thereby adding redundancy. An ''FEC decoder'' decodes the [[Forward error correction]] code used within the signal. For example, the [[Digital Video Broadcasting]] standard defines a concatenated code consisting of inner convolutional (standard NASA code, punctured, with rates <math>1/2</math>, <math>2/3</math>, <math>3/4</math>, <math>5/6</math>, <math>7/8</math>), interleaving and outer [[Reed–Solomon error correction|Reed–Solomon]] code (block length: 204 bytes, information block: 188 bytes, can correct up to 8 bytes in the block). === Differential coding === {{Main|Differential coding}} There are several modulation types (such as [[phase-shift keying|PSK]] and [[quadrature amplitude modulation|QAM]]) that have a phase ambiguity, that is, a carrier can be restored in different ways. [[Differential coding]] is used to resolve this ambiguity. When differential coding is used, the data are deliberately made to depend not only on the current ''symbol'', but also on the previous one. === Scrambling === {{Main|Scrambler (randomizer)}} [[Scrambler (randomizer)|Scrambling]] is a technique used to randomize a data stream to eliminate long '0'-only and '1'-only sequences and to assure energy dispersal. Long '0'-only and '1'-only sequences create difficulties for timing recovery circuit. Scramblers and descramblers are usually based on [[linear-feedback shift register]]s. A scrambler randomizes the transmitted data stream. A descrambler restores the original stream from the scrambled one. Scrambling shouldn't be confused with encryption, since it doesn't protect information from intruders. === Multiplexing === A [[multiplexer]] transforms several digital streams into one stream. This is often referred to as 'muxing.' Generally, a [[demultiplexer]] is a device that transforms one [[multiplexing|multiplexed]] data stream into several. Satellite modems don't have many outputs, so a ''demultiplexer'' here performs a [[drop and insert|drop]] operation, allowing to the modem to choose channels that will be transferred to the output. A demultiplexer achieves this goal by maintaining ''frame synchronization''. == Applications == [[File:NovelSat Satellite Modem NS3000.png|thumb|The NS3000 Satellite Modem modulates and demodulates data and video signals transmitted via satellite.]] [[File:ASTRA2Connect Modem front.jpg|thumb|right|The "IP modem" (satellite modem) developed and made by Newtec of Belgium for [[SES (company)|SES]]' 2Mbit/s [[ASTRA2Connect]] European two-way satellite Internet system]] Satellite modems are often used for home [[satellite internet|internet access]]. There are two different types, both employing the [[Digital Video Broadcasting]] (DVB) standard as their basis: * One-way satmodems ('''DVB-IP''' modems) use a return channel not based on communication with the satellite, such as [[telephone]] or [[cable TV|cable]]. * Two-way satmodems ('''[[DVB-RCS]]''' modems, also called '''astromodems''') employ a satellite-based return channel as well; they do not need another connection. DVB-RCS is [[ETSI]] [[standardization|standard]] '''EN 301 790'''. There are also industrial satellite modems intended to provide a permanent link. They are used, for example, in the telephone network. == See also == * [[Communications satellite]] * [[Data collection satellite]] * [[Al Yah Satellite Communications|Yahsat]] * [[Intelsat]] * [[Satellite Internet access]] * [[Very-small-aperture terminal|VSAT]] == External links == * ITU Radio Regulations, Section IV. Radio Stations and Systems – Article 1.113, definition: ''satellite link [http://www.itu.int/ International Telecommunication Union (ITU)]'' * {{cite thesis |last=Talal |first=M. |date=1997 |title=Modem design for digital satellite communications |type=PhD |publisher=Loughborough University |url=https://core.ac.uk/download/pdf/288390356.pdf |id=uk.bl.ethos.362760}} {{Satcomm}} [[Category:Satellite broadcasting]] [[Category:Modems]] [[Category:Telecommunications equipment]] [[Category:Telecommunications infrastructure]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Cite thesis
(
edit
)
Template:Main
(
edit
)
Template:No footnotes
(
edit
)
Template:Satcomm
(
edit
)
Template:Short description
(
edit
)