Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Schur complement
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Tool in linear algebra and matrix analysis}} The '''Schur complement''' is a key tool in the fields of [[linear algebra]], the theory of [[matrix (mathematics)|matrices]], numerical analysis, and statistics. It is defined for a [[block matrix]]. Suppose ''p'', ''q'' are [[nonnegative integers]] such that ''p + q > 0'', and suppose ''A'', ''B'', ''C'', ''D'' are respectively ''p'' × ''p'', ''p'' × ''q'', ''q'' × ''p'', and ''q'' × ''q'' matrices of complex numbers. Let <math display="block">M = \begin{bmatrix} A & B \\ C & D \end{bmatrix}</math> so that ''M'' is a (''p'' + ''q'') × (''p'' + ''q'') matrix. If ''D'' is invertible, then the Schur complement of the block ''D'' of the matrix ''M'' is the ''p'' × ''p'' matrix defined by <math display="block">M/D := A - BD^{-1}C.</math> If ''A'' is invertible, the Schur complement of the block ''A'' of the matrix ''M'' is the ''q'' × ''q'' matrix defined by <math display="block">M/A := D - CA^{-1}B.</math> In the case that ''A'' or ''D'' is [[singular matrix|singular]], substituting a [[generalized inverse]] for the inverses on ''M/A'' and ''M/D'' yields the '''generalized Schur complement'''. The Schur complement is named after [[Issai Schur]]<ref>{{ cite journal |author=Schur, J. |title=Über Potenzreihen die im Inneren des Einheitskreises beschränkt sind |journal=J. reine u. angewandte Mathematik |volume=147 |year=1917 |pages=205–232 |doi=10.1515/crll.1917.147.205 |url=https://eudml.org/doc/149467 }} </ref> who used it to prove [[Schur's lemma]], although it had been used previously.<ref name="Zhang 2005">{{cite book |title=The Schur Complement and Its Applications |first=Fuzhen |last=Zhang |editor1-first=Fuzhen |editor1-last=Zhang |series=Numerical Methods and Algorithms |year=2005 |volume=4 |publisher=Springer| isbn=0-387-24271-6 |doi=10.1007/b105056}}</ref> [[Emilie Virginia Haynsworth]] was the first to call it the ''Schur complement''.<ref>Haynsworth, E. V., "On the Schur Complement", ''Basel Mathematical Notes'', #BNB 20, 17 pages, June 1968.</ref> The Schur complement is sometimes referred to as the ''Feshbach map'' after a physicist [[Herman Feshbach]].<ref>{{ cite journal |author=Feshbach, Herman |title=Unified theory of nuclear reactions |journal=Annals of Physics |volume=5 |issue=4 |year=1958 |pages=357–390 |doi=10.1016/0003-4916(58)90007-1 }} </ref> ==Background== The Schur complement arises when performing a block [[Gaussian elimination]] on the matrix ''M''. In order to eliminate the elements below the block diagonal, one multiplies the matrix ''M'' by a ''block lower triangular'' matrix on the right as follows: <math display="block">\begin{align} &M = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \quad \to \quad \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} I_p & 0 \\ -D^{-1}C & I_q \end{bmatrix} = \begin{bmatrix} A - BD^{-1}C & B \\ 0 & D \end{bmatrix}, \end{align}</math> where ''I<sub>p</sub>'' denotes a ''p''×''p'' [[identity matrix]]. As a result, the Schur complement <math>M/D = A - BD^{-1}C</math> appears in the upper-left ''p''×''p'' block. Continuing the elimination process beyond this point (i.e., performing a block [[Gauss–Jordan elimination]]), <math display="block">\begin{align} &\begin{bmatrix} A - BD^{-1}C & B \\ 0 & D \end{bmatrix} \quad \to \quad \begin{bmatrix} I_p & -BD^{-1} \\ 0 & I_q \end{bmatrix} \begin{bmatrix} A - BD^{-1}C & B \\ 0 & D \end{bmatrix} = \begin{bmatrix} A - BD^{-1}C & 0 \\ 0 & D \end{bmatrix}, \end{align}</math> leads to an [[LDU decomposition]] of ''M'', which reads <math display="block">\begin{align} M &= \begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} I_p & BD^{-1} \\ 0 & I_q \end{bmatrix}\begin{bmatrix} A - BD^{-1}C & 0 \\ 0 & D \end{bmatrix}\begin{bmatrix} I_p & 0 \\ D^{-1}C & I_q \end{bmatrix}. \end{align}</math> Thus, the inverse of ''M'' may be expressed involving ''D''<sup>−1</sup> and the inverse of Schur's complement, assuming it exists, as <math display="block">\begin{align} M^{-1} = \begin{bmatrix} A & B \\ C & D \end{bmatrix}^{-1} ={} &\left(\begin{bmatrix} I_p & BD^{-1} \\ 0 & I_q \end{bmatrix} \begin{bmatrix} A - BD^{-1}C & 0 \\ 0 & D \end{bmatrix} \begin{bmatrix} I_p & 0 \\ D^{-1}C & I_q \end{bmatrix} \right)^{-1} \\ ={} &\begin{bmatrix} I_p & 0 \\ -D^{-1}C & I_q \end{bmatrix} \begin{bmatrix} \left(A - BD^{-1}C\right)^{-1} & 0 \\ 0 & D^{-1} \end{bmatrix} \begin{bmatrix} I_p & -BD^{-1} \\ 0 & I_q \end{bmatrix} \\[4pt] ={} &\begin{bmatrix} \left(A - BD^{-1}C\right)^{-1} & -\left(A - BD^{-1}C\right)^{-1} BD^{-1} \\ -D^{-1}C\left(A - BD^{-1}C\right)^{-1} & D^{-1} + D^{-1}C\left(A - BD^{-1}C\right)^{-1}BD^{-1} \end{bmatrix} \\[4pt] ={} &\begin{bmatrix} \left(M/D\right)^{-1} & -\left(M/D\right)^{-1} B D^{-1} \\ -D^{-1}C\left(M/D\right)^{-1} & D^{-1} + D^{-1}C\left(M/D\right)^{-1} B D^{-1} \end{bmatrix}. \end{align}</math> The above relationship comes from the elimination operations that involve ''D''<sup>−1</sup> and ''M/D''. An equivalent derivation can be done with the roles of ''A'' and ''D'' interchanged. By equating the expressions for ''M''<sup>−1</sup> obtained in these two different ways, one can establish the [[matrix inversion lemma]], which relates the two Schur complements of ''M'': ''M/D'' and ''M/A'' (see ''"Derivation from LDU decomposition"'' in {{slink|Woodbury_matrix_identity#Alternative_proofs}}). == Properties == * If ''p'' and ''q'' are both 1 (i.e., ''A'', ''B'', ''C'' and ''D'' are all scalars), we get the familiar formula for the inverse of a 2-by-2 matrix: : <math> M^{-1} = \frac{1}{AD-BC} \left[ \begin{matrix} D & -B \\ -C & A \end{matrix}\right] </math> : provided that ''AD'' − ''BC'' is non-zero. * In general, if ''A'' is invertible, then : <math>\begin{align} M &= \begin{bmatrix} A&B\\C&D \end{bmatrix} = \begin{bmatrix} I_p & 0 \\ CA^{-1} & I_q \end{bmatrix}\begin{bmatrix} A & 0 \\ 0 & D - CA^{-1}B \end{bmatrix}\begin{bmatrix} I_p & A^{-1}B \\ 0 & I_q \end{bmatrix}, \\[4pt] M^{-1} &= \begin{bmatrix} A^{-1} + A^{-1} B (M/A)^{-1} C A^{-1} & - A^{-1} B (M/A)^{-1} \\ - (M/A)^{-1} CA^{-1} & (M/A)^{-1} \end{bmatrix} \end{align}</math> : whenever this inverse exists. * (Schur's formula) When ''A'', respectively ''D'', is invertible, the determinant of ''M'' is also clearly seen to be given by : <math>\det(M) = \det(A) \det\left(D - CA^{-1} B\right)</math>, respectively : <math>\det(M) = \det(D) \det\left(A - BD^{-1} C\right)</math>, : which generalizes the determinant formula for 2 × 2 matrices. * (Guttman rank additivity formula) If ''D'' is invertible, then the [[Rank (linear algebra)|rank]] of ''M'' is given by : <math> \operatorname{rank}(M) = \operatorname{rank}(D) + \operatorname{rank}\left(A - BD^{-1} C\right)</math> * ([[Haynsworth inertia additivity formula]]) If ''A'' is invertible, then the ''inertia'' of the block matrix ''M'' is equal to the inertia of ''A'' plus the inertia of ''M''/''A''. * (Quotient identity) <math>A/B = ((A/C)/(B/C))</math>.<ref>{{Cite journal |last1=Crabtree |first1=Douglas E. |last2=Haynsworth |first2=Emilie V. |date=1969 |title=An identity for the Schur complement of a matrix |url=https://www.ams.org/proc/1969-022-02/S0002-9939-1969-0255573-1/ |journal=Proceedings of the American Mathematical Society |language=en |volume=22 |issue=2 |pages=364–366 |doi=10.1090/S0002-9939-1969-0255573-1 |s2cid=122868483 |issn=0002-9939|doi-access=free }}</ref> * The Schur complement of a [[Laplacian matrix]] is also a Laplacian matrix.<ref>{{Cite journal |last=Devriendt |first=Karel |date=2022 |title=Effective resistance is more than distance: Laplacians, Simplices and the Schur complement |url=https://linkinghub.elsevier.com/retrieve/pii/S0024379522000039 |journal=Linear Algebra and Its Applications |language=en |volume=639 |pages=24–49 |doi=10.1016/j.laa.2022.01.002|arxiv=2010.04521 |s2cid=222272289 }}</ref> == Application to solving linear equations == The Schur complement arises naturally in solving a system of linear equations such as<ref name="Boyd 2004" /> <math> \begin{bmatrix} A & B \\ C & D \end{bmatrix}\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} u \\ v \end{bmatrix} </math>. Assuming that the submatrix <math>A</math> is invertible, we can eliminate <math>x</math> from the equations, as follows. <math>x = A^{-1} (u - By).</math> Substituting this expression into the second equation yields : <math>\left(D - CA^{-1}B\right)y = v-CA^{-1}u.</math> We refer to this as the ''reduced equation'' obtained by eliminating <math>x</math> from the original equation. The matrix appearing in the reduced equation is called the Schur complement of the first block <math>A</math> in <math>M</math>: : <math>S \ \overset{\underset{\mathrm{def}}{}}{=}\ D - CA^{-1}B</math>. Solving the reduced equation, we obtain : <math>y = S^{-1} \left(v-CA^{-1}u\right).</math> Substituting this into the first equation yields : <math>x = \left(A^{-1} + A^{-1} B S^{-1} C A^{-1}\right) u - A^{-1} B S^{-1} v. </math> We can express the above two equation as: : <math>\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} A^{-1} + A^{-1} B S^{-1} C A^{-1} & -A^{-1} B S^{-1} \\ -S^{-1} C A^{-1} & S^{-1} \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}. </math> Therefore, a formulation for the inverse of a block matrix is: : <math> \begin{bmatrix} A & B \\ C & D \end{bmatrix}^{-1} = \begin{bmatrix} A^{-1} + A^{-1} B S^{-1} C A^{-1} & - A^{-1} B S^{-1} \\ -S^{-1} C A^{-1} & S^{-1} \end{bmatrix} = \begin{bmatrix} I_p & -A^{-1}B\\ & I_q \end{bmatrix}\begin{bmatrix} A^{-1} & \\ & S^{-1} \end{bmatrix}\begin{bmatrix} I_p & \\ -CA^{-1} & I_q \end{bmatrix}. </math> In particular, we see that the Schur complement is the inverse of the <math>2,2</math> block entry of the inverse of <math>M</math>. In practice, one needs <math>A</math> to be [[condition number|well-conditioned]] in order for this algorithm to be numerically accurate. This method is useful in electrical engineering to reduce the dimension of a network's equations. It is especially useful when element(s) of the output vector are zero. For example, when <math>u</math> or <math>v</math> is zero, we can eliminate the associated rows of the coefficient matrix without any changes to the rest of the output vector. If <math>v</math> is null then the above equation for <math>x</math> reduces to <math>x = \left(A^{-1} + A^{-1} B S^{-1} C A^{-1}\right) u</math>, thus reducing the dimension of the coefficient matrix while leaving <math>u</math> unmodified. This is used to advantage in electrical engineering where it is referred to as node elimination or [[Kron reduction]]. ==Applications to probability theory and statistics== Suppose the random column vectors ''X'', ''Y'' live in '''R'''<sup>''n''</sup> and '''R'''<sup>''m''</sup> respectively, and the vector (''X'', ''Y'') in '''R'''<sup>''n'' + ''m''</sup> has a [[multivariate normal distribution]] whose covariance is the symmetric positive-definite matrix :<math>\Sigma = \left[\begin{matrix} A & B \\ B^\mathrm{T} & C\end{matrix}\right],</math> where <math display="inline">A \in \mathbb{R}^{n \times n}</math> is the covariance matrix of ''X'', <math display="inline">C \in \mathbb{R}^{m \times m}</math> is the covariance matrix of ''Y'' and <math display="inline">B \in \mathbb{R}^{n \times m}</math> is the covariance matrix between ''X'' and ''Y''. Then the [[Conditional variance|conditional covariance]] of ''X'' given ''Y'' is the Schur complement of ''C'' in <math display="inline">\Sigma</math>:<ref name="von Mises 1964">{{cite book |title=Mathematical theory of probability and statistics |url=https://archive.org/details/mathematicaltheo0057vonm |url-access=registration |first=Richard |last=von Mises |year=1964|publisher=Academic Press| chapter=Chapter VIII.9.3|isbn=978-1483255385}}</ref> :<math>\begin{align} \operatorname{Cov}(X \mid Y) &= A - BC^{-1}B^\mathrm{T} \\ \operatorname{E}(X \mid Y) &= \operatorname{E}(X) + BC^{-1}(Y - \operatorname{E}(Y)) \end{align}</math> If we take the matrix <math>\Sigma</math> above to be, not a covariance of a random vector, but a ''sample'' covariance, then it may have a [[Wishart distribution]]. In that case, the Schur complement of ''C'' in <math>\Sigma</math> also has a Wishart distribution.{{Citation needed|date=January 2014}} == Conditions for positive definiteness and semi-definiteness == Let ''X'' be a symmetric matrix of real numbers given by <math display="block">X = \left[\begin{matrix} A & B \\ B^\mathrm{T} & C\end{matrix}\right].</math> Then * If ''A'' is invertible, then ''X'' is positive definite if and only if ''A'' and its complement ''X/A'' are both positive definite:<ref name="Zhang 2005"></ref>{{rp|34}} :<math display="block">X \succ 0 \Leftrightarrow A \succ 0, X/A = C - B^\mathrm{T} A^{-1} B \succ 0.</math> * If ''C'' is invertible, then ''X'' is positive definite if and only if ''C'' and its complement ''X/C'' are both positive definite: :<math display="block">X \succ 0 \Leftrightarrow C \succ 0, X/C = A - B C^{-1} B^\mathrm{T} \succ 0.</math> * If ''A'' is positive definite, then ''X'' is positive semi-definite if and only if the complement ''X/A'' is positive semi-definite:<ref name="Zhang 2005"/>{{rp|34}} :<math display="block">\text{If } A \succ 0, \text{ then } X \succeq 0 \Leftrightarrow X/A = C - B^\mathrm{T} A^{-1} B \succeq 0.</math> * If ''C'' is positive definite, then ''X'' is positive semi-definite if and only if the complement ''X/C'' is positive semi-definite: :<math display="block">\text{If } C \succ 0,\text{ then } X \succeq 0 \Leftrightarrow X/C = A - B C^{-1} B^\mathrm{T} \succeq 0.</math> The first and third statements can be derived<ref name="Boyd 2004">Boyd, S. and Vandenberghe, L. (2004), "Convex Optimization", Cambridge University Press (Appendix A.5.5)</ref> by considering the minimizer of the quantity <math display="block">u^\mathrm{T} A u + 2 v^\mathrm{T} B^\mathrm{T} u + v^\mathrm{T} C v, \,</math> as a function of ''v'' (for fixed ''u''). Furthermore, since <math display="block"> \left[\begin{matrix} A & B \\ B^\mathrm{T} & C \end{matrix}\right] \succ 0 \Longleftrightarrow \left[\begin{matrix} C & B^\mathrm{T} \\ B & A \end{matrix}\right] \succ 0 </math> and similarly for positive semi-definite matrices, the second (respectively fourth) statement is immediate from the first (resp. third) statement. There is also a sufficient and necessary condition for the positive semi-definiteness of ''X'' in terms of a generalized Schur complement.<ref name="Zhang 2005" /> Precisely, * <math>X \succeq 0 \Leftrightarrow A \succeq 0, C - B^\mathrm{T} A^g B \succeq 0, \left(I - A A^{g}\right)B = 0 \, </math> and * <math>X \succeq 0 \Leftrightarrow C \succeq 0, A - B C^g B^\mathrm{T} \succeq 0, \left(I - C C^g\right)B^\mathrm{T} = 0, </math> where <math>A^g</math> denotes a [[generalized inverse]] of <math>A</math>. == See also == * [[Woodbury matrix identity]] * [[Quasi-Newton method]] * [[Haynsworth inertia additivity formula]] * [[Gaussian process]] * [[Total least squares]] * [[Guyan reduction]] in computational mechanics == References == {{reflist}} [[Category:Linear algebra]] [[Category:Issai Schur]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Citation needed
(
edit
)
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Reflist
(
edit
)
Template:Rp
(
edit
)
Template:Short description
(
edit
)
Template:Slink
(
edit
)