Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Seesaw mechanism
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Model in particle physics}} In the [[Grand Unified Theory|theory of grand unification]] of [[particle physics]], and, in particular, in theories of [[neutrino]] masses and [[neutrino oscillation]], the '''seesaw mechanism''' is a generic model used to understand the relative sizes of observed neutrino masses, of the order of [[electronvolt|eV]], compared to those of [[quark]]s and charged [[lepton]]s, which are millions of times heavier. The name of the seesaw mechanism was given by [[Tsutomu Yanagida]] in a Tokyo conference in 1981. There are several types of models, each extending the [[Standard Model]]. The simplest version, "Type 1", extends the Standard Model by assuming two or more additional right-handed neutrino fields inert under the electroweak interaction,{{efn| It is possible to generate two low-mass neutrinos with only one right-handed neutrino, but the resulting mass spectra are generally not viable. }} and the existence of a very large mass scale. This allows the mass scale to be identifiable with the postulated scale of grand unification. == Type 1 seesaw == This model produces a light neutrino, for each of the three known neutrino flavors, and a corresponding very heavy [[neutrino]] for each flavor, which has yet to be observed. The simple mathematical principle behind the seesaw mechanism is the following property of any 2×2 [[Matrix (mathematics)|matrix]] of the form : <math> A = \begin{pmatrix} 0 & M \\ M & B \end{pmatrix} .</math> It has two [[eigenvalue]]s: : <math>\lambda_{(+)} = \frac{B + \sqrt{ B^2 + 4 M^2 }}{2} ,</math> and : <math>\lambda_{(-)} = \frac{B - \sqrt{ B^2 + 4 M^2 } }{2} .</math> The [[geometric mean]] of <math>\lambda_{(+)}</math> and <math>\lambda_{(-)} </math> equals <math>\left| M \right|</math>, since the [[determinant]] <math> \lambda_{(+)} \; \lambda_{(-)} = -M^2 </math>. Thus, if one of the eigenvalues goes up, the other goes down, and vice versa. This is the point of the name "[[seesaw]]" of the mechanism. In applying this model to neutrinos, <math> B </math> is taken to be much larger than <math> M .</math> Then the larger eigenvalue, <math>\lambda_{(+)},</math> is approximately equal to <math> B ,</math> while the smaller eigenvalue is approximately equal to : <math> \lambda_- \approx -\frac{M^2}{B} .</math> This mechanism serves to explain why the [[neutrino]] masses are so small.<ref name=Minkowski-1977-1biln-μ/><ref>[[Tsutomu Yanagida|Yanagida, T.]] (1979). "Horizontal gauge symmetry and masses of neutrinos", Proceedings: Workshop on the Unified Theories and the Baryon Number in the Universe: published in KEK Japan, February 13-14, 1979, Conf. Proc. C7902131, p.95- 99.</ref><ref>{{Cite journal |last=Yanagida |first=Tsutomu |date=1979-12-01 |title=Horizontal symmetry and mass of the $t$ quark |url=https://link.aps.org/doi/10.1103/PhysRevD.20.2986 |journal=Physical Review D |volume=20 |issue=11 |pages=2986–2988 |doi=10.1103/PhysRevD.20.2986|bibcode=1979PhRvD..20.2986Y |url-access=subscription }}</ref><ref name=GellMann-1979/><ref name=Yanagida-1980-HorizSym/><ref name=Glashow-1979-NATO/><ref name=Mohapatra-Senjanovic-1980/><ref name=Schechter-Valle-1980/> The matrix {{mvar|A}} is essentially the [[mass matrix]] for the neutrinos. The [[Majorana spinor|Majorana]] mass component <math> B </math> is comparable to the [[GUT scale]] and violates lepton number conservation; while the [[Dirac spinor|Dirac]] mass components <math> M </math> are of order of the much smaller [[electroweak scale]], called the VEV or ''vacuum expectation value'' below. The smaller eigenvalue <math> \lambda_{(-)} </math> then leads to a very small neutrino mass, comparable to {{val|1|ul=eV}}, which is in qualitative accord with experiments—sometimes regarded as supportive evidence for the framework of Grand Unified Theories. == Background == The 2×2 matrix {{mvar|A}} arises in a natural manner within the [[standard model]] by considering the most general mass matrix allowed by [[Gauge theory|gauge invariance]] of the standard model [[Action (physics)|action]], and the corresponding charges of the lepton- and neutrino fields. Call the [[neutrino]] part of a [[Weyl spinor]] <math> \chi ,</math> a part of a [[Chirality (physics)|left-handed]] [[lepton]] [[weak isospin]] [[Doublet state|doublet]]; the other part is the left-handed charged lepton <math>\ell,</math> :<math> L = \begin{pmatrix} \chi \\ \ell \end{pmatrix} ,</math> as it is present in the minimal [[standard model]] with neutrino masses omitted, and let <math>\eta</math> be a postulated right-handed neutrino Weyl spinor which is a [[Singlet state|singlet]] under [[weak isospin]] – i.e. a neutrino that fails to interact weakly, such as a [[sterile neutrino]]. There are now three ways to form [[Lorentz covariance|Lorentz covariant]] mass terms, giving either : <math> \tfrac{1}{2} \, B' \, \chi^\alpha \chi_\alpha \, , \quad \frac{1}{2} \, B\, \eta^\alpha \eta_\alpha \, , \quad \mathrm{ or } \quad M \, \eta^\alpha \chi_\alpha \, ,</math> and their [[complex conjugate]]s, which can be written as a [[quadratic form]], : <math> \frac{1}{2} \, \begin{pmatrix} \chi & \eta \end{pmatrix} \begin{pmatrix} B' & M \\ M & B \end{pmatrix} \begin{pmatrix} \chi \\ \eta \end{pmatrix} .</math> Since the right-handed neutrino spinor is uncharged under all standard model gauge symmetries, {{mvar|B}} is a free parameter which can in principle take any arbitrary value. The parameter {{mvar|M}} is forbidden by [[Electroweak interaction|electroweak gauge symmetry]], and can only appear after the symmetry has been [[spontaneous symmetry breaking|spontaneously broken]] by a [[Higgs mechanism]], like the Dirac masses of the charged leptons. In particular, since {{nowrap|{{mvar|χ}} ∈ {{mvar|L}}}} has [[weak isospin]] {{sfrac|1|2}} like the [[Higgs field]] {{mvar|H}}, and <math> \eta </math> has [[weak isospin]] 0, the mass parameter {{mvar|M}} can be generated from [[Yukawa interaction]]s with the [[Higgs field]], in the conventional standard model fashion, : <math> \mathcal{L}_{yuk}=y \, \eta L \epsilon H^* + ... </math> This means that {{mvar|M}} is naturally of the order of the [[vacuum expectation value]] of the standard model [[Higgs field]], : the [[vacuum expectation value]] (VEV)<math>\quad v \; \approx \; \mathrm{ 246 \; GeV }, \qquad \qquad | \langle H \rangle| \; = \; v / \sqrt{2} </math> : <math> M_t = \mathcal{O} \left( v / \sqrt{2} \right) \; \approx \; \mathrm{ 174 \; GeV } ,</math> if the dimensionless [[Yukawa interaction|Yukawa coupling]] is of order <math> y \approx 1 </math>. It can be chosen smaller consistently, but extreme values <math> y \gg 1 </math> can make the model [[Perturbation theory (quantum mechanics)|nonperturbative]]. The parameter <math> B' </math> on the other hand, is forbidden, since no [[renormalizable]] singlet under [[weak hypercharge]] and [[weak isospin|isospin]] can be formed using these doublet components – only a nonrenormalizable, dimension 5 term is allowed. This is the origin of the pattern and hierarchy of scales of the mass matrix <math> A </math> within the "Type 1" seesaw mechanism. The large size of {{mvar|B}} can be motivated in the context of [[Grand unification theory|grand unification]]. In such models, enlarged [[Gauge theory|gauge symmetries]] may be present, which initially force <math> B = 0 </math> in the unbroken phase, but generate a large, non-vanishing value <math> B \approx M_\mathsf{GUT} \approx \mathrm{10^{15}~GeV},</math> around the scale of their [[spontaneous symmetry breaking]]. So given a mass <math>M \approx \mathrm{ 100 \; GeV }</math> one has <math>\lambda_{(-)} \; \approx \; \mathrm{ 0.01 \; eV }.</math> A huge scale has thus induced a dramatically small neutrino mass for the eigenvector <math> \nu \approx \chi - \frac{\; M \;}{B} \eta .</math> == See also == * [[Majoron]] * [[Spinor]] == Footnotes == {{notelist|1}} == References == {{reflist|25em|refs= <ref name=GellMann-1979> {{cite book |first1=M. |last1=Gell-Mann |author1-link=Murray Gell-Mann |first2=P. |last2=Ramond |author2-link=Pierre Ramond |first3=R. |last3=Slansky |author3-link=Richard Slansky |year=1979 |title=Supergravity |editor1-first=D. |editor1-last=Freedman |editor2-first=P. |editor2-last=van Nieuwenhuizen |publisher=North Holland |place=Amsterdam, NL |pages=315–321 |isbn=044485438X }} </ref> <ref name=Glashow-1979-NATO> {{cite journal |first=S.L. |last=Glashow |author-link=Sheldon Glashow |year=1980 |title=The future of elementary particle physics |editor1-first=Maurice |editor1-last=Lévy |editor2-first=Jean-Louis |editor2-last=Basdevant |editor3-first=David |editor3-last=Speiser |editor4-first=Jacques |editor4-last=Weyers |editor5-first=Raymond |editor5-last=Gastmans |editor6-first=Maurice |editor6-last=Jacob |journal=NATO Sci. Ser. B |volume=61 |pages=687 |doi=10.1007/978-1-4684-7197-7 |isbn=978-1-4684-7199-1 }} </ref> <ref name=Minkowski-1977-1biln-μ> {{cite journal |first=P. |last=Minkowski |author-link=Peter Minkowski |year=1977 |title={{nobr|μ → e ''γ''}} at a rate of one out of 1 billion muon decays? |bibcode=1977PhLB...67..421M |journal=Physics Letters B |volume=67 |issue=4 |page=421 |doi=10.1016/0370-2693(77)90435-X }} </ref> <ref name=Mohapatra-Senjanovic-1980> {{cite journal |first1=R.N. |last1=Mohapatra |author1-link=Rabindra Mohapatra |first2=G. |last2=Senjanovic |author2-link=Goran Senjanović |year=1980 |title=Neutrino mass and spontaneous parity non-conservation |journal=Phys. Rev. Lett. |volume=44 |issue=14 |pages=912–915 |doi=10.1103/PhysRevLett.44.912 |bibcode=1980PhRvL..44..912M }} </ref> <ref name=Schechter-Valle-1980> {{cite journal |first1=J. |last1=Schechter |first2=J. |last2=Valle |author2-link=José W. F. Valle |year=1980 |journal=Phys. Rev. |volume=22 |issue=9 |pages=2227–2235 |doi=10.1103/PhysRevD.22.2227 |title=Neutrino masses in SU(2) ⊗ U(1) theories |bibcode=1980PhRvD..22.2227S }} </ref> <ref name=Yanagida-1980-HorizSym> {{cite journal |first=T. |last=Yanagida |author-link=Tsutomu Yanagida |year=1980 |title=Horizontal symmetry and masses of neutrinos |journal=Progress of Theoretical Physics |volume=64 |issue=3 |pages=1103–1105 |doi=10.1143/PTP.64.1103 |doi-access=free |bibcode=1980PThPh..64.1103Y }} </ref> }} {{DEFAULTSORT:Seesaw Mechanism}} [[Category:Neutrinos]] [[Category:Physics beyond the Standard Model]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Cite journal
(
edit
)
Template:Efn
(
edit
)
Template:Mvar
(
edit
)
Template:Notelist
(
edit
)
Template:Nowrap
(
edit
)
Template:Reflist
(
edit
)
Template:Sfrac
(
edit
)
Template:Short description
(
edit
)
Template:Val
(
edit
)