Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Seminorm
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Mathematical function}} In [[mathematics]], particularly in [[functional analysis]], a '''seminorm''' is like a [[Norm (mathematics)|norm]] but need not be [[positive definite]]. Seminorms are intimately connected with [[convex set]]s: every seminorm is the [[Minkowski functional]] of some [[Absorbing set|absorbing]] [[Absolutely convex set|disk]] and, conversely, the Minkowski functional of any such set is a seminorm. A [[topological vector space]] is locally convex if and only if its topology is induced by a family of seminorms. ==Definition== Let <math>X</math> be a vector space over either the [[real number]]s <math>\R</math> or the [[Complex number|complex]] numbers <math>\Complex.</math> A [[real-valued function]] <math>p : X \to \R</math> is called a {{em|seminorm}} if it satisfies the following two conditions: # [[Subadditive function|Subadditivity]]{{sfn|Kubrusly|2011|p=200}}/[[Triangle inequality]]: <math>p(x + y) \leq p(x) + p(y)</math> for all <math>x, y \in X.</math> # [[Homogeneous function|Absolute homogeneity]]:{{sfn|Kubrusly|2011|p=200}} <math>p(s x) =|s|p(x)</math> for all <math>x \in X</math> and all scalars <math>s.</math> These two conditions imply that <math>p(0) = 0</math><ref group="proof">If <math>z \in X</math> denotes the zero vector in <math>X</math> while <math>0</math> denote the zero scalar, then absolute homogeneity implies that <math>p(z) = p(0 z) = |0|p(z) = 0 p(z) = 0.</math> <math>\blacksquare</math></ref> and that every seminorm <math>p</math> also has the following property:<ref group="proof">Suppose <math>p : X \to \R</math> is a seminorm and let <math>x \in X.</math> Then absolute homogeneity implies <math>p(-x) = p((-1) x) =|-1|p(x) = p(x).</math> The triangle inequality now implies <math>p(0) = p(x + (- x)) \leq p(x) + p(-x) = p(x) + p(x) = 2 p(x).</math> Because <math>x</math> was an arbitrary vector in <math>X,</math> it follows that <math>p(0) \leq 2 p(0),</math> which implies that <math>0 \leq p(0)</math> (by subtracting <math>p(0)</math> from both sides). Thus <math>0 \leq p(0) \leq 2 p(x)</math> which implies <math>0 \leq p(x)</math> (by multiplying through by <math>1/2</math>). <math>\blacksquare</math></ref> <ol start=3> <li>[[Nonnegative|Nonnegativity]]:{{sfn|Kubrusly|2011|p=200}} <math>p(x) \geq 0</math> for all <math>x \in X.</math></li> </ol> Some authors include non-negativity as part of the definition of "seminorm" (and also sometimes of "norm"), although this is not necessary since it follows from the other two properties. By definition, a [[Norm (mathematics)|norm]] on <math>X</math> is a seminorm that also separates points, meaning that it has the following additional property: <ol start=4> <li>[[Positive definite]]/Positive{{sfn|Kubrusly|2011|p=200}}/{{visible anchor|Point-separating}}: whenever <math>x \in X</math> satisfies <math>p(x) = 0,</math> then <math>x = 0.</math></li> </ol> A {{em|{{visible anchor|seminormed space}}}} is a pair <math>(X, p)</math> consisting of a vector space <math>X</math> and a seminorm <math>p</math> on <math>X.</math> If the seminorm <math>p</math> is also a norm then the seminormed space <math>(X, p)</math> is called a {{em|[[normed space]]}}. Since absolute homogeneity implies positive homogeneity, every seminorm is a type of function called a [[sublinear function]]. A map <math>p : X \to \R</math> is called a {{em|[[sublinear function]]}} if it is subadditive and [[positive homogeneous]]. Unlike a seminorm, a sublinear function is {{em|not}} necessarily nonnegative. Sublinear functions are often encountered in the context of the [[Hahn–Banach theorem]]. A real-valued function <math>p : X \to \R</math> is a seminorm if and only if it is a [[Sublinear function|sublinear]] and [[balanced function]]. ==Examples== <ul> <li>The {{em|trivial seminorm}} on <math>X,</math> which refers to the constant <math>0</math> map on <math>X,</math> induces the [[indiscrete topology]] on <math>X.</math></li> <li>Let <math>\mu</math> be a measure on a space <math>\Omega</math>. For an arbitrary constant <math>c \geq 1</math>, let <math>X</math> be the set of all functions <math>f: \Omega \rightarrow \mathbb{R}</math> for which <math display="block">\lVert f \rVert_c := \left( \int_{\Omega}| f |^c \, d\mu \right)^{1/c}</math> exists and is finite. It can be shown that <math>X</math> is a vector space, and the functional <math>\lVert \cdot \rVert_c</math> is a seminorm on <math>X</math>. However, it is not always a norm (e.g. if <math>\Omega = \mathbb{R}</math> and <math>\mu</math> is the [[Lebesgue measure]]) because <math>\lVert h \rVert_c = 0</math> does not always imply <math>h = 0</math>. To make <math>\lVert \cdot \rVert_c</math> a norm, quotient <math>X</math> by the closed subspace of functions <math>h</math> with <math>\lVert h \rVert_c = 0</math>. The [[Lp_space#Lp_spaces_and_Lebesgue_integrals|resulting space]], <math>L^c(\mu)</math>, has a norm induced by <math>\lVert \cdot \rVert_c</math>.</li> <li>If <math>f</math> is any [[linear form]] on a vector space then its [[absolute value]] <math>|f|,</math> defined by <math>x \mapsto |f(x)|,</math> is a seminorm.</li> <li>A [[sublinear function]] <math>f : X \to \R</math> on a real vector space <math>X</math> is a seminorm if and only if it is a {{em|symmetric function}}, meaning that <math>f(-x) = f(x)</math> for all <math>x \in X.</math></li> <li>Every real-valued [[sublinear function]] <math>f : X \to \R</math> on a real vector space <math>X</math> induces a seminorm <math>p : X \to \R</math> defined by <math>p(x) := \max \{f(x), f(-x)\}.</math>{{sfn|Narici|Beckenstein|2011|pp=120–121}}</li> <li>Any finite sum of seminorms is a seminorm. The restriction of a seminorm (respectively, norm) to a [[vector subspace]] is once again a seminorm (respectively, norm).</li> <li>If <math>p : X \to \R</math> and <math>q : Y \to \R</math> are seminorms (respectively, norms) on <math>X</math> and <math>Y</math> then the map <math>r : X \times Y \to \R</math> defined by <math>r(x, y) = p(x) + q(y)</math> is a seminorm (respectively, a norm) on <math>X \times Y.</math> In particular, the maps on <math>X \times Y</math> defined by <math>(x, y) \mapsto p(x)</math> and <math>(x, y) \mapsto q(y)</math> are both seminorms on <math>X \times Y.</math></li> <li>If <math>p</math> and <math>q</math> are seminorms on <math>X</math> then so are{{sfn|Narici|Beckenstein|2011|pp=116–128}} <math display="block">(p \vee q)(x) = \max \{p(x), q(x)\}</math> and <math display="block">(p \wedge q)(x) := \inf \{p(y) + q(z) : x = y + z \text{ with } y, z \in X\}</math> where <math>p \wedge q \leq p</math> and <math>p \wedge q \leq q.</math>{{sfn|Wilansky|2013|pp=15-21}} </li> <li>The space of seminorms on <math>X</math> is generally not a [[distributive lattice]] with respect to the above operations. For example, over <math>\R^2</math>, <math>p(x, y) := \max(|x|, |y|), q(x, y) := 2|x|, r(x, y) := 2|y| </math> are such that <math display="block">((p \vee q) \wedge (p \vee r)) (x, y) = \inf \{\max(2|x_1|, |y_1|) + \max(|x_2|, 2|y_2|) : x = x_1 + x_2 \text{ and } y = y_1 + y_2\}</math> while <math>(p \vee q \wedge r) (x, y) := \max(|x|, |y|)</math></li> <li>If <math>L : X \to Y</math> is a [[linear map]] and <math>q : Y \to \R</math> is a seminorm on <math>Y,</math> then <math>q \circ L : X \to \R</math> is a seminorm on <math>X.</math> The seminorm <math>q \circ L</math> will be a norm on <math>X</math> if and only if <math>L</math> is injective and the restriction <math>q\big\vert_{L(X)}</math> is a norm on <math>L(X).</math></li> </ul> ==Minkowski functionals and seminorms== {{Main|Minkowski functional}} Seminorms on a vector space <math>X</math> are intimately tied, via Minkowski functionals, to subsets of <math>X</math> that are [[Convex set|convex]], [[Balanced set|balanced]], and [[Absorbing set|absorbing]]. Given such a subset <math>D</math> of <math>X,</math> the Minkowski functional of <math>D</math> is a seminorm. Conversely, given a seminorm <math>p</math> on <math>X,</math> the sets<math>\{x \in X : p(x) < 1\}</math> and <math>\{x \in X : p(x) \leq 1\}</math> are convex, balanced, and absorbing and furthermore, the Minkowski functional of these two sets (as well as of any set lying "in between them") is <math>p.</math>{{sfn|Schaefer|Wolff|1999|p=40}} ==Algebraic properties== Every seminorm is a [[sublinear function]], and thus satisfies all [[Sublinear_function#Properties|properties of a sublinear function]], including [[convex function|convexity]], <math>p(0) = 0,</math> and for all vectors <math>x, y \in X</math>: the [[reverse triangle inequality]]: {{sfn|Narici|Beckenstein|2011|pp=120-121}}{{sfn|Narici|Beckenstein|2011|pp=177-220}} <math display=block>|p(x) - p(y)| \leq p(x - y)</math> and also <math display=inline>0 \leq \max \{p(x), p(-x)\}</math> and <math>p(x) - p(y) \leq p(x - y).</math>{{sfn|Narici|Beckenstein|2011|pp=120-121}}{{sfn|Narici|Beckenstein|2011|pp=177-220}} For any vector <math>x \in X</math> and positive real <math>r > 0:</math>{{sfn|Narici|Beckenstein|2011|pp=116−128}} <math display=block>x + \{y \in X : p(y) < r\} = \{y \in X : p(x - y) < r\}</math> and furthermore, <math>\{x \in X : p(x) < r\}</math> is an [[Absorbing set|absorbing]] [[Absolutely convex set|disk]] in <math>X.</math>{{sfn|Narici|Beckenstein|2011|pp=116–128}} If <math>p</math> is a sublinear function on a real vector space <math>X</math> then there exists a linear functional <math>f</math> on <math>X</math> such that <math>f \leq p</math>{{sfn|Narici|Beckenstein|2011|pp=177-220}} and furthermore, for any linear functional <math>g</math> on <math>X,</math> <math>g \leq p</math> on <math>X</math> if and only if <math>g^{-1}(1) \cap \{x \in X : p(x) < 1\} = \varnothing.</math>{{sfn|Narici|Beckenstein|2011|pp=177-220}} '''Other properties of seminorms''' Every seminorm is a [[balanced function]]. A seminorm <math>p</math> is a norm on <math>X</math> if and only if <math>\{x \in X : p(x) < 1\}</math> does not contain a non-trivial vector subspace. If <math>p : X \to [0, \infty)</math> is a seminorm on <math>X</math> then <math>\ker p := p^{-1}(0)</math> is a vector subspace of <math>X</math> and for every <math>x \in X,</math> <math>p</math> is constant on the set <math>x + \ker p = \{x + k : p(k) = 0\}</math> and equal to <math>p(x).</math><ref group=proof name=ConstantOnEquivClasses>Let <math>x \in X</math> and <math>k \in p^{-1}(0).</math> It remains to show that <math>p(x + k) = p(x).</math> The triangle inequality implies <math>p(x + k) \leq p(x) + p(k) = p(x) + 0 = p(x).</math> Since <math>p(-k) = 0,</math> <math>p(x) = p(x) - p(-k) \leq p(x - (-k)) = p(x + k),</math> as desired. <math>\blacksquare</math></ref> Furthermore, for any real <math>r > 0,</math>{{sfn|Narici|Beckenstein|2011|pp=116–128}} <math display="block">r \{x \in X : p(x) < 1\} = \{x \in X : p(x) < r\} = \left\{x \in X : \tfrac{1}{r} p(x) < 1 \right\}.</math> If <math>D</math> is a set satisfying <math>\{x \in X : p(x) < 1\} \subseteq D \subseteq \{x \in X : p(x) \leq 1\}</math> then <math>D</math> is [[Absorbing set|absorbing]] in <math>X</math> and <math>p = p_D</math> where <math>p_D</math> denotes the [[Minkowski functional]] associated with <math>D</math> (that is, the gauge of <math>D</math>).{{sfn|Schaefer|Wolff|1999|p=40}} In particular, if <math>D</math> is as above and <math>q</math> is any seminorm on <math>X,</math> then <math>q = p</math> if and only if <math>\{x \in X : q(x) < 1\} \subseteq D \subseteq \{x \in X : q(x) \leq\}.</math>{{sfn|Schaefer|Wolff|1999|p=40}} If <math>(X, \|\,\cdot\,\|)</math> is a normed space and <math>x, y \in X</math> then <math>\|x - y\| = \|x - z\| + \|z - y\|</math> for all <math>z</math> in the interval <math>[x, y].</math>{{sfn|Narici|Beckenstein|2011|pp=107-113}} Every norm is a [[convex function]] and consequently, finding a global maximum of a norm-based [[objective function]] is sometimes tractable. ===Relationship to other norm-like concepts=== Let <math>p : X \to \R</math> be a non-negative function. The following are equivalent: <ol> <li><math>p</math> is a seminorm.</li> <li><math>p</math> is a [[Convex function|convex]] [[F-seminorm|<math>F</math>-seminorm]].</li> <li><math>p</math> is a convex balanced [[Metrizable topological vector space|''G''-seminorm]].{{sfn|Schechter|1996|p=691}}</li> </ol> If any of the above conditions hold, then the following are equivalent: <ol> <li><math>p</math> is a norm;</li> <li><math>\{x \in X : p(x) < 1\}</math> does not contain a non-trivial vector subspace.{{sfn|Narici|Beckenstein|2011|p=149}}</li> <li>There exists a [[Normed vector space|norm]] on <math>X,</math> with respect to which, <math>\{x \in X : p(x) < 1\}</math> is bounded.</li> </ol> If <math>p</math> is a sublinear function on a real vector space <math>X</math> then the following are equivalent:{{sfn|Narici|Beckenstein|2011|pp=177-220}} <ol> <li><math>p</math> is a [[linear functional]];</li> <li><math>p(x) + p(-x) \leq 0 \text{ for every } x \in X</math>;</li> <li><math>p(x) + p(-x) = 0 \text{ for every } x \in X</math>;</li> </ol> ===Inequalities involving seminorms=== If <math>p, q : X \to [0, \infty)</math> are seminorms on <math>X</math> then: <ul> <li><math>p \leq q</math> if and only if <math>q(x) \leq 1</math> implies <math>p(x) \leq 1.</math>{{sfn|Narici|Beckenstein|2011|pp=149–153}}</li> <li>If <math>a > 0</math> and <math>b > 0</math> are such that <math>p(x) < a</math> implies <math>q(x) \leq b,</math> then <math>a q(x) \leq b p(x)</math> for all <math>x \in X.</math> {{sfn|Wilansky|2013|pp=18-21}}</li> <li>Suppose <math>a</math> and <math>b</math> are positive real numbers and <math>q, p_1, \ldots, p_n</math> are seminorms on <math>X</math> such that for every <math>x \in X,</math> if <math>\max \{p_1(x), \ldots, p_n(x)\} < a</math> then <math>q(x) < b.</math> Then <math>a q \leq b \left(p_1 + \cdots + p_n\right).</math>{{sfn|Narici|Beckenstein|2011|p=149}}</li> <li>If <math>X</math> is a vector space over the reals and <math>f</math> is a non-zero linear functional on <math>X,</math> then <math>f \leq p</math> if and only if <math>\varnothing = f^{-1}(1) \cap \{x \in X : p(x) < 1\}.</math>{{sfn|Narici|Beckenstein|2011|pp=149–153}}</li> </ul> If <math>p</math> is a seminorm on <math>X</math> and <math>f</math> is a linear functional on <math>X</math> then: <ul> <li><math>|f| \leq p</math> on <math>X</math> if and only if <math>\operatorname{Re} f \leq p</math> on <math>X</math> (see footnote for proof).<ref>Obvious if <math>X</math> is a real vector space. For the non-trivial direction, assume that <math>\operatorname{Re} f \leq p</math> on <math>X</math> and let <math>x \in X.</math> Let <math>r \geq 0</math> and <math>t</math> be real numbers such that <math>f(x) = r e^{i t}.</math> Then <math>|f(x)|= r = f\left(e^{-it} x\right) = \operatorname{Re}\left(f\left(e^{-it} x\right)\right) \leq p\left(e^{-it} x\right) = p(x).</math></ref>{{sfn|Wilansky|2013|p=20}}</li> <li><math>f \leq p</math> on <math>X</math> if and only if <math>f^{-1}(1) \cap \{x \in X : p(x) < 1 = \varnothing\}.</math>{{sfn|Narici|Beckenstein|2011|pp=177-220}}{{sfn|Narici|Beckenstein|2011|pp=149–153}}</li> <li>If <math>a > 0</math> and <math>b > 0</math> are such that <math>p(x) < a</math> implies <math>f(x) \neq b,</math> then <math>a |f(x)| \leq b p(x)</math> for all <math>x \in X.</math>{{sfn|Wilansky|2013|pp=18-21}}</li> </ul> ===Hahn–Banach theorem for seminorms=== Seminorms offer a particularly clean formulation of the [[Hahn–Banach theorem]]: :If <math>M</math> is a vector subspace of a seminormed space <math>(X, p)</math> and if <math>f</math> is a continuous linear functional on <math>M,</math> then <math>f</math> may be extended to a continuous linear functional <math>F</math> on <math>X</math> that has the same norm as <math>f.</math>{{sfn|Wilansky|2013|pp=21-26}} A similar extension property also holds for seminorms: {{Math theorem|name=Theorem{{sfn|Narici|Beckenstein|2011|pp=150}}{{sfn|Wilansky|2013|pp=18-21}}|note=Extending seminorms|math_statement= If <math>M</math> is a vector subspace of <math>X,</math> <math>p</math> is a seminorm on <math>M,</math> and <math>q</math> is a seminorm on <math>X</math> such that <math>p \leq q\big\vert_M,</math> then there exists a seminorm <math>P</math> on <math>X</math> such that <math>P\big\vert_M = p</math> and <math>P \leq q.</math> }} :'''Proof''': Let <math>S</math> be the [[convex hull]] of <math>\{m \in M : p(m) \leq 1\} \cup \{x \in X : q(x) \leq 1\}.</math> Then <math>S</math> is an [[Absorbing set|absorbing]] [[Absolutely convex set|disk]] in <math>X</math> and so the [[Minkowski functional]] <math>P</math> of <math>S</math> is a seminorm on <math>X.</math> This seminorm satisfies <math>p = P</math> on <math>M</math> and <math>P \leq q</math> on <math>X.</math> <math>\blacksquare</math> ==Topologies of seminormed spaces== ===Pseudometrics and the induced topology=== A seminorm <math>p</math> on <math>X</math> induces a topology, called the {{em|seminorm-induced topology}}, via the canonical [[translation-invariant]] [[Pseudometric space|pseudometric]] <math>d_p : X \times X \to \R</math>; <math>d_p(x, y) := p(x - y) = p(y - x).</math> This topology is [[Hausdorff space|Hausdorff]] if and only if <math>d_p</math> is a metric, which occurs if and only if <math>p</math> is a [[Norm (mathematics)|norm]].{{sfn|Wilansky|2013 |pp=15-21}} This topology makes <math>X</math> into a [[Locally convex topological vector space|locally convex]] [[Metrizable topological vector space|pseudometrizable]] [[topological vector space]] that has a [[Bounded set (topological vector space)|bounded]] neighborhood of the origin and a [[neighborhood basis]] at the origin consisting of the following open balls (or the closed balls) centered at the origin: <math display=block>\{x \in X : p(x) < r\} \quad \text{ or } \quad \{x \in X : p(x) \leq r\}</math> as <math>r > 0</math> ranges over the positive reals. Every seminormed space <math>(X, p)</math> should be assumed to be endowed with this topology unless indicated otherwise. A topological vector space whose topology is induced by some seminorm is called {{em|seminormable}}. Equivalently, every vector space <math>X</math> with seminorm <math>p</math> induces a [[Quotient space (linear algebra)|vector space quotient]] <math>X / W,</math> where <math>W</math> is the subspace of <math>X</math> consisting of all vectors <math>x \in X</math> with <math>p(x) = 0.</math> Then <math>X / W</math> carries a norm defined by <math>p(x + W) = p(x).</math> The resulting topology, [[Pullback|pulled back]] to <math>X,</math> is precisely the topology induced by <math>p.</math> Any seminorm-induced topology makes <math>X</math> [[Locally convex topological vector space|locally convex]], as follows. If <math>p</math> is a seminorm on <math>X</math> and <math>r \in \R,</math> call the set <math>\{x \in X : p(x) < r\}</math> the {{em|open ball of radius <math>r</math> about the origin}}; likewise the closed ball of radius <math>r</math> is <math>\{x \in X : p(x) \leq r\}.</math> The set of all open (resp. closed) <math>p</math>-balls at the origin forms a neighborhood basis of [[Convex set|convex]] [[Balanced set|balanced]] sets that are open (resp. closed) in the <math>p</math>-topology on <math>X.</math> ====Stronger, weaker, and equivalent seminorms==== The notions of stronger and weaker seminorms are akin to the notions of stronger and weaker [[Norm (mathematics)|norms]]. If <math>p</math> and <math>q</math> are seminorms on <math>X,</math> then we say that <math>q</math> is {{em|stronger}} than <math>p</math> and that <math>p</math> is {{em|weaker}} than <math>q</math> if any of the following equivalent conditions holds: # The topology on <math>X</math> induced by <math>q</math> is finer than the topology induced by <math>p.</math> # If <math>x_{\bull} = \left(x_i\right)_{i=1}^{\infty}</math> is a sequence in <math>X,</math> then <math>q\left(x_{\bull}\right) := \left(q\left(x_i\right)\right)_{i=1}^{\infty} \to 0</math> in <math>\R</math> implies <math>p\left(x_{\bull}\right) \to 0</math> in <math>\R.</math>{{sfn|Wilansky|2013 |pp=15-21}} # If <math>x_{\bull} = \left(x_i\right)_{i \in I}</math> is a [[Net (mathematics)|net]] in <math>X,</math> then <math>q\left(x_{\bull}\right) := \left(q\left(x_i\right)\right)_{i \in I} \to 0</math> in <math>\R</math> implies <math>p\left(x_{\bull}\right) \to 0</math> in <math>\R.</math> # <math>p</math> is bounded on <math>\{x \in X : q(x) < 1\}.</math>{{sfn|Wilansky|2013 |pp=15-21}} # If <math>\inf{} \{q(x) : p(x) = 1, x \in X\} = 0</math> then <math>p(x) = 0</math> for all <math>x \in X.</math>{{sfn|Wilansky|2013 |pp=15-21}} # There exists a real <math>K > 0</math> such that <math>p \leq K q</math> on <math>X.</math>{{sfn|Wilansky|2013 |pp=15-21}} The seminorms <math>p</math> and <math>q</math> are called {{em|equivalent}} if they are both weaker (or both stronger) than each other. This happens if they satisfy any of the following conditions: <ol> <li>The topology on <math>X</math> induced by <math>q</math> is the same as the topology induced by <math>p.</math></li> <li><math>q</math> is stronger than <math>p</math> and <math>p</math> is stronger than <math>q.</math>{{sfn|Wilansky|2013|pp=15-21}}</li> <li>If <math>x_{\bull} = \left(x_i\right)_{i=1}^{\infty}</math> is a sequence in <math>X</math> then <math>q\left(x_{\bull}\right) := \left(q\left(x_i\right)\right)_{i=1}^{\infty} \to 0</math> if and only if <math>p\left(x_{\bull}\right) \to 0.</math></li> <li>There exist positive real numbers <math>r > 0</math> and <math>R > 0</math> such that <math>r q \leq p \leq R q.</math></li> </ol> ===Normability and seminormability=== {{See also|Normed space|Local boundedness#locally bounded topological vector space}} A topological vector space (TVS) is said to be a {{em|{{visible anchor|seminormable space}}}} (respectively, a {{em|{{visible anchor|normable space}}}}) if its topology is induced by a single seminorm (resp. a single norm). A TVS is normable if and only if it is seminormable and Hausdorff or equivalently, if and only if it is seminormable and [[T1 space|T<sub>1</sub>]] (because a TVS is Hausdorff if and only if it is a [[T1 space|T<sub>1</sub> space]]). A '''{{visible anchor|locally bounded topological vector space}}''' is a topological vector space that possesses a bounded neighborhood of the origin. Normability of [[topological vector space]]s is characterized by [[Kolmogorov's normability criterion]]. A TVS is seminormable if and only if it has a convex bounded neighborhood of the origin.{{sfn|Wilansky|2013|pp=50-51}} Thus a [[locally convex]] TVS is seminormable if and only if it has a non-empty bounded open set.{{sfn|Narici|Beckenstein|2011|pp=156-175}} A TVS is normable if and only if it is a [[T1 space|T<sub>1</sub> space]] and admits a bounded convex neighborhood of the origin. If <math>X</math> is a Hausdorff [[locally convex]] TVS then the following are equivalent: <ol> <li><math>X</math> is normable.</li> <li><math>X</math> is seminormable.</li> <li><math>X</math> has a bounded neighborhood of the origin.</li> <li>The [[strong dual]] <math>X^{\prime}_b</math> of <math>X</math> is normable.{{sfn|Trèves|2006|pp=136–149, 195–201, 240–252, 335–390, 420–433}}</li> <li>The strong dual <math>X^{\prime}_b</math> of <math>X</math> is [[Metrizable topological vector space|metrizable]].{{sfn|Trèves|2006|pp=136–149, 195–201, 240–252, 335–390, 420–433}}</li> </ol> Furthermore, <math>X</math> is finite dimensional if and only if <math>X^{\prime}_{\sigma}</math> is normable (here <math>X^{\prime}_{\sigma}</math> denotes <math>X^{\prime}</math> endowed with the [[weak-* topology]]). The product of infinitely many seminormable space is again seminormable if and only if all but finitely many of these spaces trivial (that is, 0-dimensional).{{sfn|Narici|Beckenstein|2011|pp=156–175}} ===Topological properties=== <ul> <li>If <math>X</math> is a TVS and <math>p</math> is a continuous seminorm on <math>X,</math> then the closure of <math>\{x \in X : p(x) < r\}</math> in <math>X</math> is equal to <math>\{x \in X : p(x) \leq r\}.</math>{{sfn|Narici|Beckenstein|2011|pp=116–128}}</li> <li>The closure of <math>\{0\}</math> in a locally convex space <math>X</math> whose topology is defined by a family of continuous seminorms <math>\mathcal{P}</math> is equal to <math>\bigcap_{p \in \mathcal{P}} p^{-1}(0).</math>{{sfn|Narici|Beckenstein|2011|pp=149-153}}</li> <li>A subset <math>S</math> in a seminormed space <math>(X, p)</math> is [[Bounded set (topological vector space)|bounded]] if and only if <math>p(S)</math> is bounded.{{sfn|Wilansky|2013|pp=49-50}}</li> <li>If <math>(X, p)</math> is a seminormed space then the locally convex topology that <math>p</math> induces on <math>X</math> makes <math>X</math> into a [[Metrizable topological vector space|pseudometrizable TVS]] with a canonical pseudometric given by <math>d(x, y) := p(x - y)</math> for all <math>x, y \in X.</math>{{sfn|Narici|Beckenstein|2011|pp=115-154}}</li> <li>The product of infinitely many seminormable spaces is again seminormable if and only if all but finitely many of these spaces are trivial (that is, 0-dimensional).{{sfn|Narici|Beckenstein|2011|pp=156–175}}</li> </ul> ===Continuity of seminorms=== If <math>p</math> is a seminorm on a topological vector space <math>X,</math> then the following are equivalent:{{sfn|Schaefer|Wolff|1999|p=40}} <ol> <li><math>p</math> is continuous.</li> <li><math>p</math> is continuous at 0;{{sfn|Narici|Beckenstein|2011|pp=116–128}}</li> <li><math>\{x \in X : p(x) < 1\}</math> is open in <math>X</math>;{{sfn|Narici|Beckenstein|2011|pp=116–128}}</li> <li><math>\{x \in X : p(x) \leq 1\}</math> is closed neighborhood of 0 in <math>X</math>;{{sfn|Narici|Beckenstein|2011|pp=116–128}}</li> <li><math>p</math> is uniformly continuous on <math>X</math>;{{sfn|Narici|Beckenstein|2011|pp=116–128}}</li> <li>There exists a continuous seminorm <math>q</math> on <math>X</math> such that <math>p \leq q.</math>{{sfn|Narici|Beckenstein|2011|pp=116–128}}</li> </ol> In particular, if <math>(X, p)</math> is a seminormed space then a seminorm <math>q</math> on <math>X</math> is continuous if and only if <math>q</math> is dominated by a positive scalar multiple of <math>p.</math>{{sfn|Narici|Beckenstein|2011|pp=116–128}} If <math>X</math> is a real TVS, <math>f</math> is a linear functional on <math>X,</math> and <math>p</math> is a continuous seminorm (or more generally, a sublinear function) on <math>X,</math> then <math>f \leq p</math> on <math>X</math> implies that <math>f</math> is continuous.{{sfn|Narici|Beckenstein|2011|pp=177-220}} ===Continuity of linear maps=== If <math>F : (X, p) \to (Y, q)</math> is a map between seminormed spaces then let{{sfn|Wilansky|2013|pp=21-26}} <math display="block">\|F\|_{p,q} := \sup \{q(F(x)) : p(x) \leq 1, x \in X\}.</math> If <math>F : (X, p) \to (Y, q)</math> is a linear map between seminormed spaces then the following are equivalent: <ol> <li><math>F</math> is continuous;</li> <li><math>\|F\|_{p,q} < \infty</math>;{{sfn|Wilansky|2013|pp=21-26}}</li> <li>There exists a real <math>K \geq 0</math> such that <math>p \leq K q</math>;{{sfn|Wilansky|2013|pp=21-26}} * In this case, <math>\|F\|_{p,q} \leq K.</math></li> </ol> If <math>F</math> is continuous then <math>q(F(x)) \leq \|F\|_{p,q} p(x)</math> for all <math>x \in X.</math>{{sfn|Wilansky|2013|pp=21-26}} The space of all continuous linear maps <math>F : (X, p) \to (Y, q)</math> between seminormed spaces is itself a seminormed space under the seminorm <math>\|F\|_{p,q}.</math> This seminorm is a norm if <math>q</math> is a norm.{{sfn|Wilansky|2013|pp=21-26}} ==Generalizations== The concept of {{em|norm}} in [[composition algebra]]s does {{em|not}} share the usual properties of a norm. A composition algebra <math>(A, *, N)</math> consists of an [[algebra over a field]] <math>A,</math> an [[Involution (mathematics)|involution]] <math>\,*,</math> and a [[quadratic form]] <math>N,</math> which is called the "norm". In several cases <math>N</math> is an [[isotropic quadratic form]] so that <math>A</math> has at least one [[null vector]], contrary to the separation of points required for the usual norm discussed in this article. An {{em|ultraseminorm}} or a {{em|non-Archimedean seminorm}} is a seminorm <math>p : X \to \R</math> that also satisfies <math>p(x + y) \leq \max \{p(x), p(y)\} \text{ for all } x, y \in X.</math> '''Weakening subadditivity: Quasi-seminorms''' A map <math>p : X \to \R</math> is called a {{em|[[Quasinorm|quasi-seminorm]]}} if it is (absolutely) homogeneous and there exists some <math>b \leq 1</math> such that <math>p(x + y) \leq b p(p(x) + p(y)) \text{ for all } x, y \in X.</math> The smallest value of <math>b</math> for which this holds is called the {{em|multiplier of <math>p.</math>}} A quasi-seminorm that separates points is called a {{em|quasi-norm}} on <math>X.</math> '''Weakening homogeneity - <math>k</math>-seminorms''' A map <math>p : X \to \R</math> is called a {{em|<math>k</math>-seminorm}} if it is subadditive and there exists a <math>k</math> such that <math>0 < k \leq 1</math> and for all <math>x \in X</math> and scalars <math>s,</math><math display="block">p(s x) = |s|^k p(x)</math> A <math>k</math>-seminorm that separates points is called a {{em|<math>k</math>-norm}} on <math>X.</math> We have the following relationship between quasi-seminorms and <math>k</math>-seminorms: {{block indent | em = 1.5 | text = Suppose that <math>q</math> is a quasi-seminorm on a vector space <math>X</math> with multiplier <math>b.</math> If <math>0 < \sqrt{k} < \log_2 b</math> then there exists <math>k</math>-seminorm <math>p</math> on <math>X</math> equivalent to <math>q.</math>}} ==See also== * {{annotated link|Asymmetric norm}} * {{annotated link|Banach space}} * {{annotated link|Contraction mapping}} * {{annotated link|Finest locally convex topology}} * {{annotated link|Hahn-Banach theorem}} * {{annotated link|Gowers norm}} * {{annotated link|Locally convex topological vector space}} * {{annotated link|Mahalanobis distance}} * {{annotated link|Matrix norm}} * {{annotated link|Minkowski functional}} * {{annotated link|Norm (mathematics)}} * {{annotated link|Normed vector space}} * {{annotated link|Relation of norms and metrics}} * {{annotated link|Sublinear function}} ==Notes== {{reflist|group=note}} '''Proofs''' {{reflist|group=proof}} ==References== {{reflist}} * {{Adasch Topological Vector Spaces}} <!-- {{sfn|Adasch|1978|p=}} --> * {{Berberian Lectures in Functional Analysis and Operator Theory}} <!-- {{sfn|Berberian|2014|p=}} --> * {{Bourbaki Topological Vector Spaces}} <!-- {{sfn|Bourbaki|1987|p=}} --> * {{Conway A Course in Functional Analysis}} <!-- {{sfn|Conway|1990|p=}} --> * {{Edwards Functional Analysis Theory and Applications}} <!-- {{sfn|Edwards|1995|p=}} --> * {{Grothendieck Topological Vector Spaces}} <!-- {{sfn|Grothendieck|1973|p=}} --> * {{Jarchow Locally Convex Spaces}} <!-- {{sfn|Jarchow|1981|p=}} --> * {{Khaleelulla Counterexamples in Topological Vector Spaces}} <!-- {{sfn|Khaleelulla|{{{year| 1982 }}}|p=}} --> * {{Köthe Topological Vector Spaces I}} <!-- {{sfn|Köthe|1983|p=}} --> * {{Kubrusly The Elements of Operator Theory 2nd Edition 2011}} <!--{{sfn|Kubrusly|2011|p=}}--> * {{Narici Beckenstein Topological Vector Spaces|edition=2}} * {{cite book|last=Prugovečki|first=Eduard|title=Quantum mechanics in Hilbert space|year=1981|edition=2nd|publisher=Academic Press|page=20|isbn=0-12-566060-X}} * {{Schaefer Wolff Topological Vector Spaces|edition=2}} <!-- {{sfn|Schaefer|Wolff|1999|p=}} --> * {{Schechter Handbook of Analysis and Its Foundations}} <!-- {{sfn|Schechter|1996|p=}} --> * {{Swartz An Introduction to Functional Analysis}} <!-- {{sfn|Swartz|1992|p=}} --> * {{Trèves François Topological vector spaces, distributions and kernels}} <!-- {{sfn|Trèves|2006|p=}} --> * {{Wilansky Modern Methods in Topological Vector Spaces}} <!-- {{sfn|Wilansky|2013|p=}} --> ==External links== * [https://shodhganga.inflibnet.ac.in/bitstream/10603/13152/9/09_chapter%203.pdf Sublinear functions] * [https://arxiv.org/pdf/1611.02670.pdf The sandwich theorem for sublinear and super linear functionals] {{Functional Analysis}} {{TopologicalVectorSpaces}} {{DEFAULTSORT:Norm (Mathematics)}} [[Category:Norms (mathematics)| ]] [[Category:Linear algebra]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Adasch Topological Vector Spaces
(
edit
)
Template:Annotated link
(
edit
)
Template:Berberian Lectures in Functional Analysis and Operator Theory
(
edit
)
Template:Block indent
(
edit
)
Template:Bourbaki Topological Vector Spaces
(
edit
)
Template:Cite book
(
edit
)
Template:Conway A Course in Functional Analysis
(
edit
)
Template:Edwards Functional Analysis Theory and Applications
(
edit
)
Template:Em
(
edit
)
Template:Functional Analysis
(
edit
)
Template:Grothendieck Topological Vector Spaces
(
edit
)
Template:Jarchow Locally Convex Spaces
(
edit
)
Template:Khaleelulla Counterexamples in Topological Vector Spaces
(
edit
)
Template:Kubrusly The Elements of Operator Theory 2nd Edition 2011
(
edit
)
Template:Köthe Topological Vector Spaces I
(
edit
)
Template:Main
(
edit
)
Template:Math theorem
(
edit
)
Template:Narici Beckenstein Topological Vector Spaces
(
edit
)
Template:Reflist
(
edit
)
Template:Schaefer Wolff Topological Vector Spaces
(
edit
)
Template:Schechter Handbook of Analysis and Its Foundations
(
edit
)
Template:See also
(
edit
)
Template:Sfn
(
edit
)
Template:Short description
(
edit
)
Template:Swartz An Introduction to Functional Analysis
(
edit
)
Template:TopologicalVectorSpaces
(
edit
)
Template:Trèves François Topological vector spaces, distributions and kernels
(
edit
)
Template:Visible anchor
(
edit
)
Template:Wilansky Modern Methods in Topological Vector Spaces
(
edit
)