Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Serialization
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Conversion process for computer data}} {{About|data structure encoding}} {{External links|date=August 2024}} [[File:Serialization.jpg|thumb|upright=1.35|Flow diagram]] In computing, '''serialization''' (or '''serialisation''', also referred to as '''pickling''' in [[Python (programming language)|Python]]) is the process of translating a [[data structure]] or [[object (computer science)|object]] state into a format that can be stored (e.g. [[computer file|files]] in [[secondary storage devices]], [[data buffer]]s in primary storage devices) or transmitted (e.g. [[data stream]]s over [[computer networks]]) and reconstructed later (possibly in a different computer environment).<ref>{{ cite web | first = Marshall | last = Cline | url = http://www.parashift.com/c++-faq-lite/serialize-overview.html | title = C++ FAQ: "What's This "Serialization" Thing All About?" | archive-url = https://web.archive.org/web/20150405013606/http://isocpp.org/wiki/faq/serialization | archive-date = 2015-04-05 | quote = It lets you take an object or group of objects, put them on a disk or send them through a wire or wireless transport mechanism, then later, perhaps on another computer, reverse the process, resurrecting the original object(s). The basic mechanisms are to flatten object(s) into a one-dimensional stream of bits, and to turn that stream of bits back into the original object(s).}}</ref> When the resulting series of bits is reread according to the serialization format, it can be used to create a semantically identical clone of the original object. For many complex objects, such as those that make extensive use of [[reference (computer science)|references]], this process is not straightforward. Serialization of [[object (computer science)|object]]s does not include any of their associated [[Method (computer science)|methods]] with which they were previously linked. This process of serializing an object is also called [[Marshalling (computer science)|marshalling]] an object in some situations.<ref>{{Cite web|url=https://docs.ruby-lang.org/en/master/Marshal.html|title=Module: Marshal (Ruby 3.0.2)|website=ruby-doc.org|access-date=25 July 2021}}</ref><ref name=ocaml>{{Cite web |title=Marshal |author= |website=OCaml |date= |access-date=25 July 2021 |url= https://ocaml.org/api/Marshal.html}}</ref><ref>{{Cite web|url=https://docs.python.org/3/library/pickle.html?highlight=marshalling#module-pickle|title=Python 3.9.6 documentation - Python object serialization —pickle|website=Documentation - The Python Standard Library }}</ref> The opposite operation, extracting a data structure from a series of bytes, is '''deserialization''', (also called '''unserialization''' or '''[[unmarshalling]]'''). In networking equipment hardware, the part that is responsible for serialization and deserialization is commonly called [[SerDes]]. ==Uses== Uses of serialization include: * serializing data for transfer across wires and networks ([[messaging]]). * storing data (in [[database]]s, on [[hard disk drive]]s). * [[remote procedure call]]s, e.g., as in [[SOAP]]. * distributing objects, especially in [[component-based software engineering]] such as [[Component Object Model|COM]], [[CORBA]], etc. * detecting changes in time-varying data. For some of these features to be useful, architecture independence must be maintained. For example, for maximal use of distribution, a computer running on a different [[hardware architecture]] should be able to reliably reconstruct a serialized data stream, regardless of [[endianness]]. This means that the simpler and faster procedure of directly copying the memory layout of the data structure cannot work reliably for all architectures. Serializing the data structure in an architecture-independent format means preventing the problems of [[byte ordering]], memory layout, or simply different ways of representing data structures in different [[programming language]]s. Inherent to any serialization scheme is that, because the encoding of the data is by definition serial, extracting one part of the serialized data structure requires that the entire object be read from start to end, and reconstructed. In many applications, this linearity is an asset, because it enables simple, common I/O interfaces to be utilized to hold and pass on the state of an object. In applications where higher performance is an issue, it can make sense to expend more effort to deal with a more complex, non-linear storage organization. Even on a single machine, primitive [[pointer (computer programming)|pointer]] objects are too fragile to save because the objects to which they point may be reloaded to a different location in memory. To deal with this, the serialization process includes a step called ''[[unswizzling]]'' or ''pointer unswizzling'', where direct pointer references are converted to references based on name or position. The deserialization process includes an inverse step called ''[[pointer swizzling]]''. Since both serializing and deserializing can be driven from common code (for example, the ''Serialize'' function in [[Microsoft Foundation Classes]]), it is possible for the common code to do both at the same time, and thus, 1) detect differences between the objects being serialized and their prior copies, and 2) provide the input for the next such detection. It is not necessary to actually build the prior copy because differences can be detected on the fly, a technique called differential execution. This is useful in the programming of user interfaces whose contents are time-varying — graphical objects can be created, removed, altered, or made to handle input events without necessarily having to write separate code to do those things. ==Drawbacks== Serialization breaks the opacity of an [[abstract data type]] by potentially exposing private implementation details. Trivial implementations which serialize all data members may violate [[encapsulation (object-oriented programming)|encapsulation]].<ref>{{cite web|last=S. Miller|first=Mark|title=Safe Serialization Under Mutual Suspicion|url=http://erights.org/data/serial/jhu-paper/intro.html|work=ERights.org|quote=Serialization, explained below, is an example of a tool for use by objects within an object system for operating on the graph they are embedded in. This seems to require violating the encapsulation provided by the pure object model.}}</ref> To discourage competitors from making compatible products, publishers of [[proprietary software]] often keep the details of their programs' serialization formats a [[trade secret]]. Some deliberately [[obfuscated code|obfuscate]] or even [[encryption|encrypt]] the serialized data. Yet, interoperability requires that applications be able to understand each other's serialization formats. Therefore, [[RMI-IIOP|remote method call]] architectures such as [[CORBA]] define their serialization formats in detail. Many institutions, such as archives and libraries, attempt to [[future proof]] their [[backup]] archives—in particular, [[database dump]]s—by storing them in some relatively [[human-readable]] serialized format. ==Serialization formats== {{Main|Comparison of data serialization formats}} The [[Xerox Network Systems]] Courier technology in the early 1980s influenced the first widely adopted standard. [[Sun Microsystems]] published the [[External Data Representation]] (XDR) in 1987.<ref>{{cite journal |title= XDR: External Data Representation Standard |author= Sun Microsystems |journal= RFC 1014 |year= 1987 |publisher=Network Working Group |url= http://tools.ietf.org/html/rfc1014 |access-date= July 11, 2011 }}</ref> XDR is an [[open format]], and standardized as [https://tools.ietf.org/html/std67 STD 67] (RFC 4506) by [[Internet Standard|IETF]]. In the late 1990s, a push to provide an alternative to the standard serialization protocols started: [[XML]], an [[SGML]] subset, was used to produce a human-readable [[binary-to-text encoding|text-based encoding]]. Such an encoding can be useful for persistent objects that may be read and understood by humans or communicated to other systems regardless of programming language. It has the disadvantage of losing the more compact, byte-stream-based encoding, but by this point larger storage and transmission capacities made file size less of a concern than in the early days of computing. In the 2000s, XML was often used for asynchronous transfer of structured data between client and server in [[Ajax (programming)|Ajax]] web applications. XML is an open format and standardized as a W3C recommendation. [[JSON]] is a lightweight plain-text alternative to XML and is also commonly used for client-server communication in web applications. JSON is based on [[JavaScript syntax]] but is independent of JavaScript and supported in many other programming languages. JSON is standardized as [https://tools.ietf.org/html/std90 STD 90] ({{IETF RFC|8259}}), [http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf ECMA-404], and [https://www.iso.org/standard/71616.html ISO/IEC 21778:2017]. [[YAML]] is a strict superset of JSON and includes additional features such as a data type tags, support for cyclic data structures, indentation-sensitive syntax, and multiple forms of scalar data quoting. YAML is an open format. [[Property list]]s are used for serialization by [[NeXTSTEP]], [[GNUstep]], [[macOS]], and [[iOS]] [[Software framework|frameworks]]. ''Property list'', or ''p-list'' for short, doesn't refer to a single serialization format but instead several different variants, some human-readable and one binary. For large volume scientific datasets, such as satellite data and output of numerical climate, weather, or ocean models, specific binary serialization standards have been developed, e.g. [[Hierarchical Data Format|HDF]], [[netCDF]] and the older [[GRIB]]. ==Programming language support== Several [[object-oriented programming]] languages directly support ''object serialization'' (or ''object archival''), either by [[syntactic sugar]] elements or providing a standard [[interface (computing)|interface]] for doing so. The languages which do so include [[Ruby programming language|Ruby]], [[Smalltalk]], [[Python (programming language)|Python]], [[PHP]], [[Objective-C]], [[Delphi (programming language)|Delphi]], [[Java (programming language)|Java]], and the [[.NET Framework|.NET]] family of languages. There are also libraries available that add serialization support to languages that lack native support for it. ===C and C++=== [[C (programming language)|C]] and [[C++]] do not provide serialization as any sort of high-level construct, but both languages support writing any of the built-in [[C data types|data types]], as well as [[plain old data]] [[struct (C programming language)|structs]], as binary data. As such, it is usually trivial to write custom serialization functions. Moreover, compiler-based solutions, such as the ODB [[object–relational mapping|ORM]] system for C++ and the [[gSOAP]] toolkit for C and C++, are capable of automatically producing serialization code with few or no modifications to class declarations. Other popular serialization frameworks are Boost.Serialization<ref>{{cite web|url=http://www.boost.org/doc/libs/1_46_1/libs/serialization/doc/index.html|title=Serialization|website=www.boost.org}}</ref> from the [[Boost C++ Libraries|Boost Framework]], the S11n framework,<ref>{{cite web|url=http://s11n.net/|title=s11n.net: object serialization/persistence in C++|first=stephan|last=beal|website=s11n.net}}</ref> and Cereal.<ref>{{cite web|url=https://uscilab.github.io/cereal/|title=cereal Docs - Main|website=uscilab.github.io}}</ref> [[Microsoft Foundation Class Library|MFC framework]] (Microsoft) also provides serialization methodology as part of its Document-View architecture. ===CFML=== [[CFML]] allows data structures to be serialized to [[WDDX]] with the <code>[https://wikidocs.adobe.com/wiki/display/coldfusionen/cfwddx <cfwddx>]</code> tag and to [[JSON]] with the [https://wikidocs.adobe.com/wiki/display/coldfusionen/serializejson SerializeJSON()] function. ===Delphi=== [[Delphi (programming language)|Delphi]] provides a built-in mechanism for serialization of components (also called persistent objects), which is fully integrated with its [[Integrated development environment|IDE]]. The component's contents are saved to a DFM file and reloaded on-the-fly. ===Go=== [[Go (programming language)|Go]] natively supports unmarshalling/marshalling of [[JSON]] and [[XML]] data.<ref>{{Cite web |title=Package encoding |author= |website=pkg.go.dev |date=12 July 2021 |url= https://pkg.go.dev/encoding}}</ref> There are also third-party modules that support [[YAML]]<ref>{{cite web |url=https://github.com/go-yaml/yaml |title=GitHub - YAML support for the Go language|website=GitHub|date= |author= |accessdate= 25 July 2021}}</ref> and [[Protocol Buffers]].<ref>{{Cite web|title=proto · pkg.go.dev|url=https://pkg.go.dev/google.golang.org/protobuf/proto|access-date=2021-06-22|website=pkg.go.dev}}</ref> Go also supports ''Gobs''.<ref>{{Cite web |title=gob package - encoding/gob - pkg.go.dev |url=https://pkg.go.dev/encoding/gob |access-date=2022-03-04 |website=pkg.go.dev}}</ref> ===Haskell=== In Haskell, serialization is supported for types that are members of the Read and Show [[type class]]es. Every type that is a member of the <code>Read</code> type class defines a function that will extract the data from the string representation of the dumped data. The <code>Show</code> type class, in turn, contains the <code>show</code> function from which a string representation of the object can be generated. The programmer need not define the functions explicitly—merely declaring a type to be deriving Read or deriving Show, or both, can make the compiler generate the appropriate functions for many cases (but not all: function types, for example, cannot automatically derive Show or Read). The auto-generated instance for Show also produces valid source code, so the same Haskell value can be generated by running the code produced by show in, for example, a Haskell interpreter.<ref>{{cite web|url=http://hackage.haskell.org/package/base-4.6.0.1/docs/Text-Show.html#t:Show|access-date=15 January 2014 |title=Text.Show Documentation}}</ref> For more efficient serialization, there are haskell libraries that allow high-speed serialization in binary format, e.g. [http://hackage.haskell.org/package/binary binary]. ===Java=== Java provides automatic serialization which requires that the object be [[Marker interface pattern|marked]] by implementing the {{Javadoc:SE|package=java.io|java/io|Serializable}} [[interface (Java)|interface]]. Implementing the interface marks the class as "okay to serialize", and Java then handles serialization internally. There are no serialization methods defined on the <code>Serializable</code> interface, but a serializable class can optionally define methods with certain special names and signatures that if defined, will be called as part of the serialization/deserialization process. The language also allows the developer to override the serialization process more thoroughly by implementing another interface, the {{Javadoc:SE|java/io|Externalizable}} interface, which includes two special methods that are used to save and restore the object's state.<br /> There are three primary reasons why objects are not serializable by default and must implement the <code>Serializable</code> interface to access Java's serialization mechanism.<br />Firstly, not all objects capture useful semantics in a serialized state. For example, a {{Javadoc:SE|java/lang|Thread}} object is tied to the state of the current [[JVM]]. There is no context in which a deserialized <code>Thread</code> object would maintain useful semantics.<br />Secondly, the serialized state of an object forms part of its class' compatibility contract. Maintaining compatibility between versions of serializable classes requires additional effort and consideration. Therefore, making a class serializable needs to be a deliberate design decision and not a default condition.<br />Lastly, serialization allows access to non-[[Transient (computer programming)|transient]] private members of a class that are not otherwise accessible. Classes containing sensitive information (for example, a password) should not be serializable nor externalizable.<ref name=Bloch>{{cite book | title= "Effective Java: Programming Language Guide" |last=Bloch| first=Joshua| publisher=Addison-Wesley | edition=third | isbn=978-0134685991| year=2018}}</ref>{{rp|339–345}} The standard encoding method uses a recursive graph-based translation of the object's class descriptor and serializable fields into a byte stream. [[Primitive data type|Primitive]]s as well as non-transient, non-static referenced objects are encoded into the stream. Each object that is referenced by the serialized object via a field that is not marked as <code>transient</code> must also be serialized; and if any object in the complete graph of non-transient object references is not serializable, then serialization will fail. The developer can influence this behavior by marking objects as transient, or by redefining the serialization for an object so that some portion of the reference graph is truncated and not serialized.<br /> Java does not use constructor to serialize objects. It is possible to serialize Java objects through [[JDBC]] and store them into a database.<ref>{{cite web|url=https://asktom.oracle.com/pls/apex/f?p=100:11:0::::p11_question_id:1285601748584|title=Ask TOM "Serializing Java Objects into the database (and ge..."|website=asktom.oracle.com}}</ref> While [[Swing (Java)|Swing]] components do implement the Serializable interface, they are not guaranteed to be portable between different versions of the Java Virtual Machine. As such, a Swing component, or any component which inherits it, may be serialized to a byte stream, but it is not guaranteed that this will be re-constitutable on another machine. ===JavaScript=== Since ECMAScript 5.1,<ref>{{cite web|url=https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/JSON#Specifications|title=JSON|website=MDN Web Docs|access-date=22 March 2018}}</ref> [[JavaScript]] has included the built-in <code>JSON</code> object and its methods <code>JSON.parse()</code> and <code>JSON.stringify()</code>. Although JSON is originally based on a subset of JavaScript,<ref>{{cite web|url=http://www.json.org/|title=JSON|website=www.json.org|access-date=22 March 2018}}</ref> there are boundary cases where JSON is not valid JavaScript. Specifically, JSON allows the [[Unicode#Newlines|Unicode line terminators]] {{unichar|2028|LINE SEPARATOR}} and {{unichar|2029|PARAGRAPH SEPARATOR}} to appear unescaped in quoted strings, while ECMAScript 2018 and older does not.<ref name="json-2028">{{cite web|url=http://timelessrepo.com/json-isnt-a-javascript-subset|title=JSON: The JavaScript subset that isn't|author=Holm, Magnus|date=15 May 2011|publisher=The timeless repository|access-date=23 September 2016|archive-date=13 May 2012|archive-url=https://web.archive.org/web/20120513012409/http://timelessrepo.com/json-isnt-a-javascript-subset|url-status=dead}}</ref><ref>{{cite web|url=https://tc39.github.io/proposal-json-superset/|title=TC39 Proposal: Subsume JSON|date=22 May 2018|publisher=ECMA TC39 committee}}</ref> See [[JSON#Data portability issues|the main article on JSON]]. ===Julia=== [[Julia (programming language)|Julia]] implements serialization through the <code>serialize()</code> / <code>deserialize()</code> modules,<ref>{{Cite web |title=Serialization |author= |website=The Julia Language |date= |access-date=25 July 2021 |url= https://docs.julialang.org/en/v1/stdlib/Serialization/}}</ref> intended to work within the same version of Julia, and/or instance of the same system image.<ref>{{cite web|url=https://github.com/JuliaLang/julia/commit/bb67ff25e2799b27d10877692f74bae66ccc0270#commitcomment-6403498|title=faster and more compact serialization of symbols and strings · JuliaLang/julia@bb67ff2|website=GitHub}}</ref> The <code>HDF5.jl</code> package offers a more stable alternative, using a documented format and common library with wrappers for different languages,<ref>{{cite web|url=https://github.com/JuliaIO/HDF5.jl|title=HDF5.jl: Saving and loading data in the HDF5 file format|date=20 August 2017|via=GitHub}}</ref> while the default serialization format is suggested to have been designed rather with maximal performance for network communication in mind.<ref>{{cite web|url=https://stackoverflow.com/a/24968971/2668831|title=Julia: how stable are serialize() / deserialize()|website=stackoverflow.com|date=2014}}</ref> ===Lisp=== Generally a [[Lisp (programming language)|Lisp]] data structure can be serialized with the functions "<code>read</code>" and "<code>print</code>". A variable foo containing, for example, a list of arrays would be printed by <code>(print foo)</code>. Similarly an object can be read from a stream named s by <code>(read s)</code>. These two parts of the Lisp implementation are called the Printer and the Reader. The output of "<code>print</code>" is human readable; it uses lists demarked by parentheses, for example: {{code|(4 2.9 "x" y)|lisp}}. In many types of Lisp, including [[Common Lisp]], the printer cannot represent every type of data because it is not clear how to do so. In Common Lisp for example the printer cannot print CLOS objects. Instead the programmer may write a method on the generic function <code>print-object</code>, this will be invoked when the object is printed. This is somewhat similar to the method used in Ruby. Lisp code itself is written in the syntax of the reader, called read syntax. Most languages use separate and different parsers to deal with code and data, Lisp only uses one. A file containing lisp code may be read into memory as a data structure, transformed by another program, then possibly executed or written out, such as in a [[read–eval–print loop]]. Not all readers/writers support cyclic, recursive or shared structures. ===.NET=== [[.NET]] has several serializers designed by [[Microsoft]]. There are also many serializers by third parties. More than a dozen serializers are discussed and tested [http://geekswithblogs.net/LeonidGaneline/archive/2015/05/06/serializers-in-.net.-v.2.aspx here].<ref>{{cite web|title=.NET Serializers|url=http://geekswithblogs.net/LeonidGaneline/archive/2015/05/06/serializers-in-.net.-v.2.aspx|quote=There are many kinds of serializers; they produce very compact data very fast. There are serializers for messaging, for data stores, for marshaling objects. What is the best serializer in .NET?}}</ref> and [https://aumcode.github.io/serbench here]<ref>{{cite web|url=https://aumcode.github.io/serbench|title=SERBENCH by aumcode|website=aumcode.github.io}}</ref> ===OCaml=== [[OCaml]]'s standard library provides marshalling through the <code>Marshal</code> module<ref name=ocaml/> and the Pervasives functions <code>output_value</code> and <code>input_value</code>. While OCaml programming is statically type-checked, uses of the <code>Marshal</code> module may break type guarantees, as there is no way to check whether an unmarshalled stream represents objects of the expected type. In OCaml it is difficult to marshal a function or a data structure which contains a function (e.g. an object which contains a method), because executable code in functions cannot be transmitted across different programs. (There is a flag to marshal the code position of a function but it can only be unmarshalled in exactly the same program). The standard marshalling functions can preserve sharing and handle cyclic data, which can be configured by a flag. ===Perl=== Several [[Perl]] modules available from [[CPAN]] provide serialization mechanisms, including <code>Storable</code> , <code>JSON::XS</code> and <code>FreezeThaw</code>. Storable includes functions to serialize and deserialize Perl data structures to and from files or Perl scalars. In addition to serializing directly to files, <code>Storable</code> includes the <code>freeze</code> function to return a serialized copy of the data packed into a scalar, and <code>thaw</code> to deserialize such a scalar. This is useful for sending a complex data structure over a [[network socket]] or storing it in a database. When serializing structures with <code>Storable</code>, there are network safe functions that always store their data in a format that is readable on any computer at a small cost of speed. These functions are named <code>nstore</code>, <code>nfreeze</code>, etc. There are no "n" functions for deserializing these structures — the regular <code>thaw</code> and <code>retrieve</code> deserialize structures serialized with the "<code>n</code>" functions and their machine-specific equivalents. ===PHP=== [[PHP]] originally implemented serialization through the built-in <code>serialize()</code> and <code>unserialize()</code> functions.<ref>{{cite web|url=http://ca.php.net/manual/en/language.oop5.serialization.php|title=PHP: Object Serialization - Manual|website=ca.php.net}}</ref> PHP can serialize any of its data types except resources (file pointers, sockets, etc.). The built-in <code>unserialize()</code> function is often dangerous when used on completely untrusted data.<ref>{{cite web|last=Esser|first=Stephen|title=Shocking News in PHP Exploitation|url=http://www.suspekt.org/2009/11/28/shocking-news-in-php-exploitation/|work=Suspekt...|date=2009-11-28|url-status=dead|archive-url=https://web.archive.org/web/20120106034257/http://www.suspekt.org/2009/11/28/shocking-news-in-php-exploitation/|archive-date=2012-01-06}}</ref> For objects, there are two "[[Magic (programming)|magic]] methods" that can be implemented within a class — <code>__sleep()</code> and <code>__wakeup()</code> — that are called from within <code>serialize()</code> and <code>unserialize()</code>, respectively, that can clean up and restore an object. For example, it may be desirable to close a database connection on serialization and restore the connection on deserialization; this functionality would be handled in these two magic methods. They also permit the object to pick which properties are serialized. Since PHP 5.1, there is an object-oriented serialization mechanism for objects, the <code>Serializable</code> interface.<ref name="Serializable">{{cite web|url=http://www.php.net/manual/en/class.serializable.php|title=PHP: Serializable - Manual|website=www.php.net}}</ref> ===Prolog=== [[Prolog]]'s ''term'' structure, which is the only data structure of the language, can be serialized out through the built-in predicate <code>write_term/3</code> and serialized-in through the built-in predicates <code>read/1</code> and <code>read_term/2</code>. The resulting stream is uncompressed text (in some encoding determined by configuration of the target stream), with any free variables in the term represented by placeholder variable names. The predicate <code>write_term/3</code> is standardized in the [[Prolog#ISO Prolog|ISO Specification for Prolog]] (ISO/IEC 13211-1) on pages 59 ff. ("Writing a term, § 7.10.5"). Therefore it is expected that terms serialized-out by one implementation can be serialized-in by another without ambiguity or surprises. In practice, implementation-specific extensions (e.g. SWI-Prolog's dictionaries) may use non-standard term structures, so interoperability may break in edge cases. As examples, see the corresponding manual pages for SWI-Prolog,<ref>{{cite web|url=https://www.swi-prolog.org/pldoc/man?section=termrw|title="Term reading and writing"|website=www.swi-prolog.org}}</ref> SICStus Prolog,<ref>{{cite web|url=https://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/mpg_002dref_002dwrite_005fterm.html#mpg_002dref_002dwrite_005fterm|title="write_term/[2,3]"|website=sicstus.sics.se}}</ref> GNU Prolog.<ref>{{cite web|url=http://gprolog.org/manual/html_node/gprolog038.html|title="Term input/output"|website=gprolog.org}}</ref> Whether and how serialized terms received over the network are checked against a specification (after deserialization from the character stream has happened) is left to the implementer. Prolog's built-in [[Prolog syntax and semantics#Definite clause grammars|Definite Clause Grammars]] can be applied at that stage. ===Python=== The core general serialization mechanism is the <code>pickle</code> [[Python (programming language)#Libraries|standard library]] module, alluding to the database systems term ''pickling''<ref>{{cite journal|last1=Herlihy|first1=Maurice|last2=Liskov|first2=Barbara|author-link1=Maurice Herlihy|author-link2=Barbara Liskov|title=A Value Transmission Method for Abstract Data Types|journal=[[ACM Transactions on Programming Languages and Systems]]|date=October 1982|volume=4|issue=4|pages=527–551|doi=10.1145/69622.357182|url=http://cs.brown.edu/~mph/HerlihyL82/p527-herlihy.pdf|issn=0164-0925|oclc=67989840|citeseerx=10.1.1.87.5301|s2cid=8126961}}</ref><ref>{{cite book|last1=Birrell|first1=Andrew|last2=Jones|first2=Mike|last3=Wobber|first3=Ted|title=Proceedings of the eleventh ACM Symposium on Operating systems principles - SOSP '87 |chapter=A simple and efficient implementation of a small database |date=November 1987|volume=11|issue=5|pages=149–154|doi=10.1145/41457.37517|isbn=089791242X |issn=0163-5980|oclc=476062921|quote=Our implementation makes use of a mechanism called “pickles”, which will convert between any strongly typed data structure and a representation of that structure suitable for storing in permanent disk files. The operation Pickle.Write takes a pointer to a strongly typed data structure and delivers buffers of bits for writing to the disk. Conversely Pickle.Read reads buffers of bits from the disk and delivers a copy of the original data structure.(*) This conversion involves identifying the occurrences of addresses in the structure, and arranging that when the structure is read back from disk the addresses are replaced with addresses valid in the current execution environment. The pickle mechanism is entirely automatic: it is driven by the run-time typing structures that are present for our garbage collection mechanism. ... (*) Pickling is quite similar to the concept of marshalling in remote procedure calls. But in fact our pickling implementation works only by interpreting at run-time the structure of [[dynamically typed]] values, while our RPC implementation works only by generating code for the marshalling of statically typed values. Each facility would benefit from adding the mechanisms of the other, but that has not yet been done.|citeseerx=10.1.1.100.1457|s2cid=12908261}}</ref><ref>{{cite web|last1=van Rossum|first1=Guido|author-link1=Guido van Rossum|title=Flattening Python Objects|url=http://legacy.python.org/workshops/1994-11/FlattenPython.html|website=Python Programming Language – Legacy Website|publisher=[[Python Software Foundation]]|access-date=6 April 2017|location=[[Delaware]], United States|date=1 December 1994|quote=Origin of the name 'flattening': Because I want to leave the original 'marshal' module alone, and Jim complained that 'serialization' also means something totally different that's actually relevant in the context of [[Concurrent computing|concurrent]] access to persistent objects, I'll use the term 'flattening' from now on. ... (The Modula-3 system uses the term 'pickled' data for this concept. They have probably solved all problems already, and in a type-safe manner :-)}}</ref> to describe data serialization (''unpickling'' for ''deserializing''). Pickle uses a simple [[Stack (abstract data type)|stack]]-based [[virtual machine]] that records the instructions used to reconstruct the object. It is a cross-version [https://docs.python.org/library/pickle.html#pickle-protocol customisable] but unsafe (not secure against erroneous or malicious data) serialization format. Malformed or maliciously constructed data, may cause the deserializer to import arbitrary modules and instantiate any object.<ref name=autogenerated1>{{cite web|url=https://docs.python.org/2/library/pickle.html|title=11.1. pickle — Python object serialization — Python 2.7.14rc1 documentation|website=docs.python.org}}</ref><ref>{{cite web|url=https://docs.python.org/release/3.0.1/library/pickle.html#pickle-restrict|title=pickle — Python object serialization — Python v3.0.1 documentation|website=docs.python.org}}</ref> The standard library also includes modules serializing to standard data formats: <code>[https://docs.python.org/library/json.html json]</code> (with built-in support for basic scalar and collection types and able to support arbitrary types via [https://docs.python.org/library/json.html#encoders-and-decoders encoding and decoding hooks]). <code>[https://docs.python.org/library/plistlib.html plistlib]</code> (with support for both binary and XML [[property list]] formats). <code>[https://docs.python.org/library/xdrlib.html xdrlib]</code> (with support for the External Data Representation (XDR) standard as described in RFC 1014). Finally, it is recommended that an object's <code>[https://docs.python.org/reference/datamodel.html#object.__repr__ __repr__]</code> be evaluable in the right environment, making it a rough match for Common Lisp's <code>[http://www.lispworks.com/documentation/HyperSpec/Body/f_pr_obj.htm print-object]</code>. Not all object types can be pickled automatically, especially ones that hold [[operating system]] resources like [[file handle]]s, but users can register custom "reduction" and construction functions to support the pickling and unpickling of arbitrary types. Pickle was originally implemented as the pure Python <code>pickle</code> module, but, in versions of Python prior to 3.0, the <code>cPickle</code> module (also a built-in) offers improved performance (up to 1000 times faster<ref name=autogenerated1 />). The <code>cPickle</code> was adapted from the [[Unladen Swallow]] project. In Python 3, users should always import the standard version, which attempts to import the accelerated version and falls back to the pure Python version.<ref>{{cite web|url=https://docs.python.org/release/3.1.5/whatsnew/3.0.html|title=What's New In Python 3.0 — Python v3.1.5 documentation|website=docs.python.org}}</ref> ===R=== [[R (programming language)|R]] has the function <code>dput</code> which writes an ASCII text representation of an R object to a file or connection. A representation can be read from a file using <code>dget</code>.<ref>[R manual http://stat.ethz.ch/R-manual/R-patched/library/base/html/dput.html]</ref> More specific, the function <code>serialize</code> serializes an R object to a connection, the output being a raw vector coded in hexadecimal format. The <code>unserialize</code> function allows to read an object from a connection or a raw vector.<ref>[R manual http://stat.ethz.ch/R-manual/R-patched/library/base/html/serialize.html]</ref> ===REBOL=== [[REBOL]] will serialize to file (<code>save/all</code>) or to a <code>string!</code> (<code>mold/all</code>). Strings and files can be deserialized using the [[Type polymorphism|polymorphic]] <code>load</code> function. <code>RProtoBuf</code> provides cross-language data serialization in R, using [[Protocol Buffers]].<ref>{{Cite journal |arxiv = 1401.7372|last1 = Eddelbuettel|first1 = Dirk|title = RProtoBuf: Efficient Cross-Language Data Serialization in R|journal = Journal of Statistical Software|volume = 71|issue = 2|last2 = Stokely|first2 = Murray|last3 = Ooms|first3 = Jeroen|year = 2014|doi = 10.18637/jss.v071.i02 |doi-access = free|s2cid = 36239952}}</ref> ===Ruby=== [[Ruby programming language|Ruby]] includes the standard module <code>[https://docs.ruby-lang.org/en/master/Marshal.html Marshal]</code> with 2 methods <code>dump</code> and <code>load</code>, akin to the standard Unix utilities <code>[[dump (Unix)|dump]]</code> and <code>[[restore (program)|restore]]</code>. These methods serialize to the standard class <code>String</code>, that is, they effectively become a sequence of bytes. Some objects cannot be serialized (doing so would raise a <code>TypeError</code> exception): bindings, procedure objects, instances of class IO, singleton objects and interfaces. If a class requires custom serialization (for example, it requires certain cleanup actions done on dumping / restoring), it can be done by implementing 2 methods: <code>_dump</code> and <code>_load</code>. The [[instance method]] <code>_dump</code> should return a <code>String</code> object containing all the information necessary to reconstitute objects of this class and all referenced objects up to a maximum depth given as an integer parameter (a value of -1 implies that depth checking should be disabled). The [[class method]] <code>_load</code> should take a <code>String</code> and return an object of this class. ===Rust=== [[File:Rust serde UML diagram.svg|thumb|Our example struct {{Code|Point}} implements the {{Code|Serialize}} and {{Code|Deserialize}} traits]] <code>[https://serde.rs/ Serde]</code> is the most widely used library, or crate, for serialization in [[Rust programming language|Rust]] which provides the {{Code|Serialize}} and {{Code|Deserialize}} traits. ===Smalltalk=== In general, non-recursive and non-sharing objects can be stored and retrieved in a human readable form using the <code>storeOn:</code>/<code>readFrom:</code> protocol. The <code>storeOn:</code> method generates the text of a Smalltalk expression which – when evaluated using <code>readFrom:</code> – recreates the original object. This scheme is special, in that it uses a procedural description of the object, not the data itself. It is therefore very flexible, allowing for classes to define more compact representations. However, in its original form, it does not handle cyclic data structures or preserve the identity of shared references (i.e. two references a single object will be restored as references to two equal, but not identical copies). For this, various portable and non-portable alternatives exist. Some of them are specific to a particular Smalltalk implementation or class library. There are several ways in [[Squeak|Squeak Smalltalk]] to serialize and store objects. The easiest and most used are <code>storeOn:/readFrom:</code> and binary storage formats based on <code>SmartRefStream</code> serializers. In addition, bundled objects can be stored and retrieved using <code>ImageSegments</code>. Both provide a so-called "binary-object storage framework", which support serialization into and retrieval from a compact binary form. Both handle cyclic, recursive and shared structures, storage/retrieval of class and [[metaclass]] info and include mechanisms for "on the fly" object migration (i.e. to convert instances which were written by an older version of a class with a different object layout). The APIs are similar (storeBinary/readBinary), but the encoding details are different, making these two formats incompatible. However, the Smalltalk/X code is open source and free and can be loaded into other Smalltalks to allow for cross-dialect object interchange. Object serialization is not part of the ANSI Smalltalk specification. As a result, the code to serialize an object varies by Smalltalk implementation. The resulting binary data also varies. For instance, a serialized object created in Squeak Smalltalk cannot be restored in [[Ambrai Smalltalk]]. Consequently, various applications that do work on multiple Smalltalk implementations that rely on object serialization cannot share data between these different implementations. These applications include the MinneStore object database<ref>{{Cite web|url=http://minnestore.sourceforge.net/|archive-url=https://web.archive.org/web/20080511234145/http://minnestore.sourceforge.net/|archive-date=11 May 2008|website=SourceForge|title=MinneStore version 2}}</ref> and some [[Remote procedure call|RPC]] packages. A solution to this problem is SIXX,<ref>{{Cite web|url=http://www.mars.dti.ne.jp/~umejava/smalltalk/sixx/index.html|title=What's new|access-date=25 July 2021|website=SIXX - Smalltalk Instance eXchange in XML|date=23 January 2010}}</ref> which is a package for multiple Smalltalks that uses an [[XML]]-based format for serialization. ===Swift=== The [[Swift (programming language)|Swift]] standard library provides two protocols, <code>Encodable</code> and <code>Decodable</code> (composed together as <code>Codable</code>), which allow instances of conforming types to be serialized to or deserialized from [[JSON]], [[property list]]s, or other formats.<ref>{{cite web|url=https://github.com/apple/swift-evolution/blob/master/proposals/0166-swift-archival-serialization.md|title=Swift Archival & Serialization|website=www.github.com|date=2018-12-02}}</ref> Default implementations of these protocols can be generated by the compiler for types whose stored properties are also <code>Decodable</code> or <code>Encodable</code>. ===PowerShell=== [[PowerShell]] implements serialization through the [[Shell builtin|built-in]] cmdlet <code>Export-CliXML</code>. <code>Export-CliXML</code> serializes .NET objects and stores the resulting XML in a file. To reconstitute the objects, use the <code>Import-CliXML</code> cmdlet, which generates a deserialized object from the XML in the exported file. Deserialized objects, often known as "property bags" are not live objects; they are snapshots that have properties, but no methods. Two dimensional data structures can also be (de)serialized in [[Comma-separated values|CSV]] format using the built-in cmdlets <code>Import-CSV</code> and <code>Export-CSV</code>. ==See also== * [[Commutation (telemetry)]] * [[Comparison of data serialization formats]] * [[Container format]] * [[Hibernate (Java)]] * [[XML Schema (W3C)|XML Schema]] * [[Basic Encoding Rules]] * [[Google Protocol Buffers]] * [[Wikidata|Wikibase]] * [[Apache Avro]] ==References== {{reflist|30em}} ==External links== * {{Javadoc:SE-guide|serialization|Java Object Serialization documentation}} * [https://web.archive.org/web/20070122194723/http://java.sun.com/j2se/1.4.2/docs/guide/serialization/index.html Java 1.4 Object Serialization documentation]. * [http://www.macchiato.com/columns/Durable4.html Durable Java: Serialization] {{webarchive |url=https://web.archive.org/web/20051125013312/http://www.macchiato.com/columns/Durable4.html |date=25 November 2005 }} * [http://rpbourret.com/xml/XMLDataBinding.htm XML Data Binding Resources] * [http://dev.simantics.org/index.php/Org.simantics.databoard Databoard] - Binary serialization with partial and random access, type system, RPC, type adaption, and text format {{Data exchange}} {{Authority control}} [[Category:Data serialization formats|*]] [[Category:Persistence]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:About
(
edit
)
Template:Authority control
(
edit
)
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite web
(
edit
)
Template:Code
(
edit
)
Template:Data exchange
(
edit
)
Template:External links
(
edit
)
Template:IETF RFC
(
edit
)
Template:Javadoc:SE
(
edit
)
Template:Javadoc:SE-guide
(
edit
)
Template:Main
(
edit
)
Template:Reflist
(
edit
)
Template:Rp
(
edit
)
Template:Short description
(
edit
)
Template:Unichar
(
edit
)
Template:Webarchive
(
edit
)