Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Shape
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{short description|Form of an object}} {{other uses}} {{redirect|Geometric shape|the Unicode symbols|Geometric Shapes (Unicode block)}} [[File:Plastic vormenstoof of puzzelbal van “Tupperware Toy”, objectnr 83212.JPG|thumb|A children's toy called Shape-O made by [[Tupperware Brands|Tupperware]] used for learning various shapes.]] A '''shape''' is a [[graphics|graphical representation]] of an object's form or its external boundary, outline, or external [[Surface (mathematics)|surface]]. It is distinct from other object properties, such as [[color]], [[Surface texture|texture]], or [[material]] type. In [[geometry]], ''shape'' excludes information about the object's [[Position (geometry)|position]], [[size]], [[Orientation (geometry)|orientation]] and [[chirality]].<ref name=Kendall/> A '''''figure''''' is a representation including both shape and size (as in, e.g., [[figure of the Earth]]). A '''plane shape''' or '''plane figure''' is constrained to lie on a ''[[plane (geometry)|plane]]'', in contrast to ''[[solid figure|solid]]'' 3D shapes. A '''two-dimensional shape''' or '''two-dimensional figure''' (also: '''2D shape''' or '''2D figure''') may lie on a more general curved ''[[surface (mathematics)|surface]]'' (a [[two-dimensional space]]). == Classification of simple shapes == {{Main|Lists of shapes}} [[File:Polygon types.svg|thumb|right|300px|A variety of [[polygon]]al shapes.]] Some simple shapes can be put into broad categories. For instance, [[polygon]]s are classified according to their number of edges as [[triangle]]s, [[quadrilateral]]s, [[pentagon]]s, etc. Each of these is divided into smaller categories; triangles can be [[equilateral]], [[isosceles]], [[obtuse triangle|obtuse]], [[Triangle#By internal angles|acute]], [[Triangle|scalene]], etc. while quadrilaterals can be [[rectangle]]s, [[rhombi]], [[trapezoids]], [[squares]], etc. Other common shapes are [[Point (geometry)|points]], [[line (geometry)|lines]], [[plane (geometry)|planes]], and [[conic sections]] such as [[ellipse]]s, [[circle]]s, and [[parabola]]s. Among the most common 3-dimensional shapes are [[polyhedra]], which are shapes with flat faces; [[ellipsoid]]s, which are egg-shaped or sphere-shaped objects; [[cylinder (geometry)|cylinders]]; and [[cone]]s. If an object falls into one of these categories exactly or even approximately, we can use it to describe the shape of the object. Thus, we say that the shape of a [[manhole cover]] is a [[disk (mathematics)|disk]], because it is approximately the same geometric object as an actual geometric disk. ==In geometry== [[File:Area.svg|thumb|250px|A set of geometric shapes in 2 dimensions: [[parallelogram]], [[triangle]] & [[circle]]]] [[File:Basic shapes.svg|thumb|250px|A set of geometric shapes in 3 dimensions: [[Pyramid (geometry)|pyramid]], [[sphere]] & [[cube]]]] A '''geometric shape''' consists of the [[Geometry|geometric]] information which remains when [[Translation (geometry)|location]], [[Scaling (geometry)|scale]], [[Orientation (geometry)|orientation]] and [[reflection (geometry)|reflection]] are removed from the description of a [[geometric object]].<ref name=Kendall>{{cite journal| doi = 10.1112/blms/16.2.81| author = Kendall, D.G.| title = Shape Manifolds, Procrustean Metrics, and Complex Projective Spaces| journal = Bulletin of the London Mathematical Society| year = 1984| volume = 16| issue = 2| pages = 81–121}}</ref> That is, the result of moving a shape around, enlarging it, rotating it, or reflecting it in a mirror is the same shape as the original, and not a distinct shape. Many two-dimensional geometric shapes can be defined by a set of [[Point (geometry)|points]] or [[Vertex (geometry)|vertices]] and [[line (geometry)|lines]] connecting the points in a closed chain, as well as the resulting interior points. Such shapes are called [[polygon]]s and include [[triangle]]s, [[square]]s, and [[pentagon]]s. Other shapes may be bounded by [[curve]]s such as the [[circle]] or the [[ellipse]]. Many three-dimensional geometric shapes can be defined by a set of vertices, lines connecting the vertices, and two-dimensional [[Face (geometry)|faces]] enclosed by those lines, as well as the resulting interior points. Such shapes are called [[polyhedron]]s and include [[cube]]s as well as [[Pyramid (geometry)|pyramids]] such as [[tetrahedron]]s. Other three-dimensional shapes may be bounded by curved surfaces, such as the [[ellipsoid]] and the [[sphere]]. A shape is said to be [[Convex polytope|convex]] if all of the points on a line segment between any two of its points are also part of the shape. ===Properties=== There are multiple ways to compare the shapes of two objects: * [[Congruence (geometry)|Congruence]]: Two objects are ''congruent'' if one can be transformed into the other by a sequence of rotations, translations, and/or reflections. * [[Similarity (geometry)|Similarity]]: Two objects are ''similar'' if one can be transformed into the other by a uniform scaling, together with a sequence of rotations, translations, and/or reflections. * [[Homotopy#Isotopy|Isotopy]]: Two objects are ''isotopic'' if one can be transformed into the other by a sequence of [[Deformation (mechanics)|deformations]] that do not tear the object or put holes in it. [[Image:Similar-geometric-shapes.svg|thumb|300px|left|Figures shown in the same color have the same shape as each other and are said to be similar.]] Sometimes, two similar or congruent objects may be regarded as having a different shape if a reflection is required to transform one into the other. For instance, the letters "'''b'''" and "'''d'''" are a reflection of each other, and hence they are congruent and similar, but in some contexts they are not regarded as having the same shape. Sometimes, only the outline or external boundary of the object is considered to determine its shape. For instance, a hollow sphere may be considered to have the same shape as a solid sphere. [[Procrustes analysis]] is used in many sciences to determine whether or not two objects have the same shape, or to measure the difference between two shapes. In advanced mathematics, [[quasi-isometry]] can be used as a criterion to state that two shapes are approximately the same. Simple shapes can often be classified into basic [[geometry|geometric]] objects such as a [[line (geometry)|line]], a [[curve]], a [[plane (geometry)|plane]], a [[plane figure]] (e.g. [[square (geometry)|square]] or [[circle]]), or a solid figure (e.g. [[cube]] or [[sphere]]). However, most shapes occurring in the physical world are complex. Some, such as plant structures and coastlines, may be so complicated as to defy traditional mathematical description – in which case they may be analyzed by [[differential geometry]], or as [[fractal]]s. Some common shapes include: [[Circle]], [[Square]], [[Triangle]], [[Rectangle]], [[Oval]], [[Star (polygon)]], [[Rhombus]], [[Semicircle]]. Regular polygons starting at pentagon follow the naming convention of the Greek derived prefix with '-gon' suffix: Pentagon, Hexagon, Heptagon, Octagon, Nonagon, Decagon... See [[polygon]] == Equivalence of shapes == In geometry, two subsets of a [[Euclidean space]] have the same shape if one can be transformed to the other by a combination of [[translation (geometry)|translations]], [[rotation]]s (together also called [[rigid transformation]]s), and [[Scaling (geometry)|uniform scalings]]. In other words, the ''shape'' of a set of points is all the geometrical information that is invariant to translations, rotations, and size changes. Having the same shape is an [[equivalence relation]], and accordingly a precise mathematical definition of the notion of shape can be given as being an [[equivalence class]] of subsets of a Euclidean space having the same shape. Mathematician and statistician [[David George Kendall]] writes:<ref>{{cite journal| doi = 10.1112/blms/16.2.81| author = Kendall, D.G.| title = Shape Manifolds, Procrustean Metrics, and Complex Projective Spaces| journal = Bulletin of the London Mathematical Society| year = 1984| volume = 16| issue = 2| pages = 81–121| url = http://image.diku.dk/imagecanon/material/kendall-shapes.pdf}}</ref> <blockquote>In this paper ‘shape’ is used in the vulgar sense, and means what one would normally expect it to mean. [...] We here define ‘shape’ informally as ‘all the geometrical information that remains when location, scale<ref>Here, scale means only [[uniform scaling]], as non-uniform scaling would change the shape of the object (e.g., it would turn a square into a rectangle).</ref> and rotational effects are filtered out from an object.’</blockquote> Shapes of physical objects are equal if the subsets of space these objects occupy satisfy the definition above. In particular, the shape does not depend on the size and placement in space of the object. For instance, a "'''<small>d</small>'''" and a "'''<big>p</big>'''" have the same shape, as they can be perfectly superimposed if the "'''<small>d</small>'''" is translated to the right by a given distance, rotated upside down and magnified by a given factor (see [[Procrustes superimposition]] for details). However, a [[mirror image]] could be called a different shape. For instance, a "'''<big>b</big>'''" and a "'''<big>p</big>'''" have a different shape, at least when they are constrained to move within a two-dimensional space like the page on which they are written. Even though they have the same size, there's no way to perfectly superimpose them by translating and rotating them along the page. Similarly, within a three-dimensional space, a right hand and a left hand have a different shape, even if they are the mirror images of each other. Shapes may change if the object is scaled non-uniformly. For example, a [[sphere]] becomes an [[ellipsoid]] when scaled differently in the vertical and horizontal directions. In other words, preserving axes of [[symmetry]] (if they exist) is important for preserving shapes. Also, shape is determined by only the outer boundary of an object. ===Congruence and similarity=== {{Main|Congruence (geometry)|Similarity (geometry)}} Objects that can be transformed into each other by rigid transformations and mirroring (but not scaling) are [[Congruence (geometry)|congruent]]. An object is therefore congruent to its [[mirror image]] (even if it is not symmetric), but not to a scaled version. Two congruent objects always have either the same shape or mirror image shapes, and have the same size. Objects that have the same shape or mirror image shapes are called [[geometrically similar]], whether or not they have the same size. Thus, objects that can be transformed into each other by rigid transformations, mirroring, and uniform scaling are similar. Similarity is preserved when one of the objects is uniformly scaled, while congruence is not. Thus, congruent objects are always geometrically similar, but similar objects may not be congruent, as they may have different size. === Homeomorphism === {{Main|Homeomorphism}} A more flexible definition of shape takes into consideration the fact that realistic shapes are often deformable, e.g. a person in different postures, a tree bending in the wind or a hand with different finger positions. One way of modeling non-rigid movements is by [[homeomorphism]]s. Roughly speaking, a homeomorphism is a continuous stretching and bending of an object into a new shape. Thus, a [[square (geometry)|square]] and a [[circle]] are homeomorphic to each other, but a [[sphere]] and a [[torus|donut]] are not. An often-repeated [[mathematical joke]] is that topologists cannot tell their coffee cup from their donut,<ref>{{cite book|title=Differential Equations: A Dynamical Systems Approach. Part II: Higher-Dimensional Systems|first1=John H.|last1=Hubbard|first2=Beverly H.|last2=West|publisher=Springer|series=Texts in Applied Mathematics|volume=18|year=1995|isbn=978-0-387-94377-0|page=204|url=https://books.google.com/books?id=SHBj2oaSALoC&q=%22coffee+cup%22+topologist+joke&pg=PA204}}</ref> since a sufficiently pliable donut could be reshaped to the form of a coffee cup by creating a dimple and progressively enlarging it, while preserving the donut hole in a cup's handle. A described shape has external lines that you can see and make up the shape. If you were putting your coordinates on a coordinate graph you could draw lines to show where you can see a shape, however not every time you put coordinates in a graph as such you can make a shape. This shape has a outline and boundary so you can see it and is not just regular dots on a regular paper. === Shape analysis === {{main|Statistical shape analysis}} The above-mentioned mathematical definitions of rigid and non-rigid shape have arisen in the field of [[statistical shape analysis]]. In particular, [[Procrustes analysis]] is a technique used for comparing shapes of similar objects (e.g. bones of different animals), or measuring the deformation of a deformable object. Other methods are designed to work with non-rigid (bendable) objects, e.g. for posture independent shape retrieval (see for example [[Spectral shape analysis]]). ===Similarity classes=== All [[similar triangles]] have the same shape. These shapes can be classified using [[complex number]]s {{mvar|u}}, {{mvar|v}}, {{mvar|w}} for the vertices, in a method advanced by J.A. Lester<ref>J.A. Lester (1996) "Triangles I: Shapes", ''[[Aequationes Mathematicae]]'' 52:30–54</ref> and [[Rafael Artzy]]. For example, an [[equilateral triangle]] can be expressed by the complex numbers 0, 1, {{nowrap|(1 + i√3)/2}} representing its vertices. Lester and Artzy call the ratio <math display="block">S(u, v, w) = \frac{u - w}{u - v} </math> the '''shape''' of triangle {{math|(''u'', ''v'', ''w'')}}. Then the shape of the equilateral triangle is <math display="block">\frac{0 - \frac{1 + i \sqrt{3}}{2}}{0 - 1} = \frac{1 + i\sqrt{3}}{2} = \cos(60^\circ) + i\sin(60^\circ) = e^{i\pi/3}.</math> For any [[affine transformation]] of the [[complex plane]], <math>z \mapsto a z + b,\quad a \ne 0,</math> a triangle is transformed but does not change its shape. Hence shape is an [[invariant (mathematics)|invariant]] of [[affine geometry]]. The shape {{math|1=''p'' = S(''u'',''v'',''w'')}} depends on the order of the arguments of function S, but [[permutation]]s lead to related values. For instance, <math display="block">1 - p = 1 - \frac{u-w}{u-v} = \frac{w-v}{u-v} = \frac{v-w}{v-u} = S(v,u,w).</math> Also <math display="block">p^{-1} = S(u,w,v).</math> Combining these permutations gives <math>S(v,w,u) = (1 - p)^{-1}.</math> Furthermore, <math display="block">p(1-p)^{-1} = S(u,v,w)S(v,w,u) = \frac{u-w}{v-w} = S(w,v,u). </math> These relations are "conversion rules" for shape of a triangle. The shape of a [[quadrilateral]] is associated with two complex numbers {{mvar|p}}, {{mvar|q}}. If the quadrilateral has vertices {{math|''u''}}, {{math|''v''}}, {{math|''w''}}, {{math|''x''}}, then {{math|1=''p'' = S(''u'',''v'',''w'')}} and {{math|1=''q'' = S(''v'',''w'',''x'')}}. Artzy proves these propositions about quadrilateral shapes: # If <math> p = (1-q)^{-1},</math> then the quadrilateral is a [[parallelogram]]. # If a parallelogram has {{math|1={{!}} arg ''p'' {{!}} = {{!}} arg ''q'' {{!}}}}, then it is a [[rhombus]]. # When {{math|1=''p'' = 1 + i}} and {{math|1=''q'' = (1 + i)/2}}, then the quadrilateral is [[square]]. # If <math>p = r(1-q^{-1})</math> and {{math|1=sgn ''r'' = sgn(Im ''p'')}}, then the quadrilateral is a [[trapezoid]]. A [[polygon]] <math> (z_1, z_2,...z_n)</math> has a shape defined by ''n'' − 2 complex numbers <math>S(z_j, z_{j+1}, z_{j+2}), \ j=1,...,n-2.</math> The polygon bounds a [[convex set]] when all these shape components have imaginary components of the same sign.<ref>[[Rafael Artzy]] (1994) "Shapes of Polygons", ''Journal of Geometry'' 50(1–2):11–15</ref> == Human perception of shapes == Human vision relies on a wide range of shape representations.<ref name="ShapeComp">{{Cite journal|last1=Morgenstern|first1=Yaniv|last2=Hartmann|first2=Frieder|last3=Schmidt|first3=Filipp|last4=Tiedemann|first4=Henning|last5=Prokott|first5=Eugen|last6=Maiello|first6=Guido|last7=Fleming|first7=Roland|title=An image-computable model of visual shape similarity|journal=PLOS Computational Biology|year=2021|language=en|volume=17|issue=6|pages=34|doi=10.1371/journal.pcbi.1008981|pmid=34061825 |pmc=8195351 |doi-access=free}}</ref><ref>{{cite journal |doi=10.1016/j.cviu.2013.04.005|title=50 Years of object recognition: Directions forward|journal=Computer Vision and Image Understanding|volume=117|issue=8|pages=827–891|year=2013|last1=Andreopoulos|first1=Alexander|last2=Tsotsos|first2=John K.}}</ref> Some psychologists have theorized that humans mentally break down images into simple geometric shapes (e.g., cones and spheres) called [[geon (psychology)|geons]].<ref>Marr, D., & Nishihara, H. (1978). Representation and recognition of the spatial organization of three-dimensional shapes. Proceedings of the Royal Society of London, 200, 269–294.</ref> Meanwhile, others have suggested shapes are decomposed into features or dimensions that describe the way shapes tend to vary, like their ''segmentability'', ''compactness'' and ''spikiness''.<ref>{{Cite journal|last=Huang|first=Liqiang|title=Space of preattentive shape features|journal=Journal of Vision|year=2020|language=en|volume=20|issue=4|pages=10|doi=10.1167/jov.20.4.10|pmid=32315405|pmc=7405702|doi-access=free}}</ref> When comparing shape similarity, however, at least 22 independent dimensions are needed to account for the way natural shapes vary. <ref name="ShapeComp"/> There is also clear evidence that shapes guide human [[visual spatial attention|attention]].<ref>{{cite journal |last1=Alexander |first1=R. G. |last2=Schmidt |first2=J. |last3=Zelinsky |first3=G.Z. |title=Are summary statistics enough? Evidence for the importance of shape in guiding visual search. |journal=Visual Cognition |date=2014 |volume=22 |issue=3–4 |pages=595–609|pmid=26180505 |pmc=4500174 |doi=10.1080/13506285.2014.890989 }}</ref> ==See also== * [[Area]] * [[Glossary of shapes with metaphorical names]] * [[Lists of shapes]] * [[Shape factor (disambiguation)|Shape factor]] * [[Size]] * [[Skew polygon]] * [[Solid geometry]] * [[Region (mathematics)]] == References == {{Reflist}} == External links == * {{wiktionary-inline}} [[Category:Elementary geometry]] [[Category:Geometric shapes| ]] [[Category:Morphology]] [[Category:Structure]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Main
(
edit
)
Template:Math
(
edit
)
Template:Mvar
(
edit
)
Template:Nowrap
(
edit
)
Template:Other uses
(
edit
)
Template:Redirect
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)
Template:Wiktionary-inline
(
edit
)