Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Signed-digit representation
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Positional system with signed digits; the representation may not be unique}} {{Numeral systems}} {{distinguish|Signed number representations}} In [[mathematical notation]] for [[number]]s, a '''signed-digit representation''' is a [[positional numeral system]] with a set of [[sign (mathematics)|sign]]ed [[numerical digit|digit]]s used to [[Code|encode]] the [[integers]]. Signed-digit representation can be used to accomplish fast addition of integers because it can eliminate chains of dependent carries.<ref>Dhananjay Phatak, I. Koren (1994) [https://cs.umbc.edu/~phatak/publications/hsdtrc.pdf Hybrid Signed-Digit Number Systems: A Unified Framework for Redundant Number Representations with Bounded Carry Propagation Chains]</ref> In the [[binary numeral system]], a special case signed-digit representation is the ''[[non-adjacent form]]'', which can offer speed benefits with minimal space overhead. ==History== Challenges in [[calculation]] stimulated early authors Colson (1726) and Cauchy (1840) to use signed-digit representation. The further step of replacing negated digits with new ones was suggested by Selling (1887) and Cajori (1928). In 1928, [[Florian Cajori]] noted the recurring theme of signed digits, starting with [[John Colson|Colson]] (1726) and [[Augustin-Louis Cauchy|Cauchy]] (1840).<ref>[[Augustin-Louis Cauchy]] (16 November 1840) "Sur les moyens d'eviter les erreurs dans les calculs numerique", [[Comptes rendus]] 11:789. Also found in ''Oevres completes'' Ser. 1, vol. 5, pp. 434–42.</ref> In his book ''History of Mathematical Notations'', Cajori titled the section "Negative numerals".<ref>{{cite book |last= Cajori |first=Florian |author-link=Florian Cajori|title= A History of Mathematical Notations |page= [https://archive.org/details/historyofmathema00cajo_0/page/57 57] |publisher= [[Dover Publications]] |year= 1993 |orig-year= 1928-1929 |isbn= 978-0486677668 | url = https://archive.org/details/historyofmathema00cajo_0|url-access= registration }}</ref> For completeness, Colson<ref>{{Cite journal |last=Colson |first=John |date=1726 |title=A Short Account of Negativo-Affirmative Arithmetick, by Mr. John Colson, F. R. S. |url=https://www.jstor.org/stable/103469 |journal=Philosophical Transactions |volume=34 |pages=161–173 |jstor=103469 |bibcode=1726RSPT...34..161C |issn=0260-7085}}</ref> uses examples and describes [[addition]] (pp. 163–4), [[multiplication]] (pp. 165–6) and [[division (mathematics)|division]] (pp. 170–1) using a table of multiples of the divisor. He explains the convenience of approximation by truncation in multiplication. Colson also devised an instrument (Counting Table) that calculated using signed digits. [[Eduard Selling]]<ref>Eduard Selling (1887) ''Eine neue Rechenmachine'', pp. 15–18, Berlin</ref> advocated inverting the digits 1, 2, 3, 4, and 5 to indicate the negative sign. He also suggested ''snie'', ''jes'', ''jerd'', ''reff'', and ''niff'' as names to use vocally. Most of the other early sources used a bar over a digit to indicate a negative sign for it. Another German usage of signed-digits was described in 1902 in [[Klein's encyclopedia]].<ref>Rudolf Mehmke (1902) "Numerisches Rechen", §4 Beschränkung in den verwendeten Ziffern, [[Klein's encyclopedia]], I-2, p. 944.</ref> ==Definition and properties== ===Digit set=== Let <math>\mathcal{D}</math> be a [[finite set]] of [[numerical digits]] with [[cardinality]] <math>b > 1</math> (If <math>b \leq 1</math>, then the positional number system is [[Triviality (mathematics)|trivial]] and only represents the [[trivial ring]]), with each digit denoted as <math>d_i</math> for <math>0 \leq i < b.</math> <math>b</math> is known as the <em>[[radix]]</em> or <em>[[number base]]</em>. <math>\mathcal{D}</math> can be used for a signed-digit representation if it's associated with a unique [[Function (mathematics)|function]] <math>f_\mathcal{D}:\mathcal{D}\rightarrow\mathbb{Z}</math> such that <math>f_\mathcal{D}(d_i) \equiv i \bmod b</math> for all <math>0 \leq i < b.</math> This function, <math>f_{\mathcal{D}},</math> is what rigorously and formally establishes how integer values are assigned to the symbols/glyphs in <math>\mathcal{D}.</math> One benefit of this formalism is that the definition of "the integers" (however they may be defined) is not conflated with any particular system for writing/representing them; in this way, these two distinct (albeit closely related) concepts are kept separate. <math>\mathcal{D}</math> can be [[Partition of a set|partitioned]] into three distinct sets <math>\mathcal{D}_{+}</math>, <math>\mathcal{D}_{0}</math>, and <math>\mathcal{D}_{-}</math>, representing the positive, zero, and negative digits respectively, such that all digits <math>d_{+}\in\mathcal{D}_{+}</math> satisfy <math>f_\mathcal{D}(d_{+}) > 0</math>, all digits <math>d_{0}\in\mathcal{D}_{0}</math> satisfy <math>f_\mathcal{D}(d_{0}) = 0</math> and all digits <math>d_{-}\in\mathcal{D}_{-}</math> satisfy <math>f_\mathcal{D}(d_{-}) < 0</math>. The cardinality of <math>\mathcal{D}_{+}</math> is <math>b_{+}</math>, the cardinality of <math>\mathcal{D}_{0}</math> is <math>b_{0}</math>, and the cardinality of <math>\mathcal{D}_{-}</math> is <math>b_{-}</math>, giving the number of positive and negative digits respectively, such that <math>b = b_{+} + b_{0} + b_{-}</math>. ====Balanced form representations==== {{See also|Balanced ternary}} Balanced form representations are representations where for every positive digit <math>d_{+}</math>, there exist a corresponding negative digit <math>d_{-}</math> such that <math>f_\mathcal{D}(d_{+}) = -f_\mathcal{D}(d_{-})</math>. It follows that <math>b_{+} = b_{-}</math>. Only [[odd number|odd]] bases can have balanced form representations, as otherwise <math>d_{b/2}</math> has to be the opposite of itself and hence 0, but <math>0\ne \frac b2</math>. In balanced form, the negative digits <math>d_{-}\in\mathcal{D}_{-}</math> are usually denoted as positive digits with a bar over the digit, as <math>d_{-} = \bar{d}_{+}</math> for <math>d_{+}\in\mathcal{D}_{+}</math>. For example, the digit set of [[balanced ternary]] would be <math>\mathcal{D}_{3} = \lbrace\bar{1},0,1\rbrace</math> with <math>f_{\mathcal{D}_{3}}(\bar{1}) = -1</math>, <math>f_{\mathcal{D}_{3}}(0) = 0</math>, and <math>f_{\mathcal{D}_{3}}(1) = 1</math>. This convention is adopted in [[finite field]]s of odd [[Prime number|prime]] order <math>q</math>:<ref>{{Cite book|title=Projective Geometries Over Finite Fields|first1=J. W. P.|last1=Hirschfeld|author-link=J. W. P. Hirschfeld|publisher=[[Oxford University Press]]|year=1979|page=8|isbn=978-0-19-850295-1}}</ref> :<math>\mathbb{F}_{q} = \lbrace0, 1, \bar{1} = -1,... d = \frac{q - 1}{2},\ \bar{d} = \frac{1-q}{2}\ |\ q = 0\rbrace.</math> ====Dual signed-digit representation==== Every digit set <math>\mathcal{D}</math> has a [[Duality (order theory)|dual]] digit set <math>\mathcal{D}^\operatorname{op}</math> given by the [[inverse order]] of the digits with an [[isomorphism]] <math>g:\mathcal{D}\rightarrow\mathcal{D}^\operatorname{op}</math> defined by <math>-f_\mathcal{D} = g\circ f_{\mathcal{D}^\operatorname{op}}</math>. As a result, for any signed-digit representations <math>\mathcal{N}</math> of a number system [[Ring (mathematics)|ring]] <math>N</math> constructed from <math>\mathcal{D}</math> with [[Valuation (algebra)|valuation]] <math>v_\mathcal{D}:\mathcal{N}\rightarrow N</math>, there exists a dual signed-digit representations of <math>N</math>, <math>\mathcal{N}^\operatorname{op}</math>, constructed from <math>\mathcal{D}^\operatorname{op}</math> with [[Valuation (algebra)|valuation]] <math>v_{\mathcal{D}^\operatorname{op}}:\mathcal{N}^\operatorname{op}\rightarrow N</math>, and an isomorphism <math>h:\mathcal{N}\rightarrow\mathcal{N}^\operatorname{op}</math> defined by <math>-v_\mathcal{D} = h\circ v_{\mathcal{D}^\operatorname{op}}</math>, where <math>-</math> is the additive inverse operator of <math>N</math>. The digit set for balanced form representations is [[self-dual]]. ===For integers=== Given the digit set <math>\mathcal{D}</math> and function <math>f:\mathcal{D}\rightarrow\mathbb{Z}</math> as defined above, let us define an [[integer]] [[endofunction]] <math>T:\mathbb{Z}\rightarrow\mathbb{Z}</math> as the following: :<math>T(n) = \begin{cases} \frac{n - f(d_i)}{b} &\text{if } n \equiv i \bmod b, 0 \leq i < b \end{cases}</math> If the only [[periodic point]] of <math>T</math> is the [[fixed point (mathematics)|fixed point]] <math>0</math>, then the set of all signed-digit representations of the [[integers]] <math>\mathbb{Z}</math> using <math>\mathcal{D}</math> is given by the [[Kleene plus]] <math>\mathcal{D}^+</math>, the set of all finite [[concatenation|concatenated]] strings of digits <math>d_n \ldots d_0</math> with at least one digit, with <math>n\in\mathbb{N}</math>. Each signed-digit representation <math>m \in \mathcal{D}^+</math> has a [[Valuation (algebra)|valuation]] <math>v_\mathcal{D}:\mathcal{D}^+\rightarrow\mathbb{Z}</math> :<math>v_\mathcal{D}(m) = \sum_{i=0}^{n}f_\mathcal{D}(d_{i})b^{i}</math>. Examples include [[balanced ternary]] with digits <math>\mathcal{D} = \lbrace \bar{1}, 0, 1\rbrace</math>. Otherwise, if there exist a non-zero [[periodic point]] of <math>T</math>, then there exist integers that are represented by an infinite number of non-zero digits in <math>\mathcal{D}</math>. Examples include the standard [[decimal numeral system]] with the digit set <math>\operatorname{dec} = \lbrace 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 \rbrace</math>, which requires an [[Radix complement|infinite number of the digit]] <math>9</math> to represent the [[additive inverse]] <math>-1</math>, as <math>T_\operatorname{dec}(-1) = \frac{-1 - 9}{10} = -1</math>, and the positional numeral system with the digit set <math>\mathcal{D} = \lbrace \text{A}, 0, 1\rbrace</math> with <math>f(\text{A}) = -4</math>, which requires an infinite number of the digit <math>\text{A}</math> to represent the number <math>2</math>, as <math>T_\mathcal{D}(2) = \frac{2 - (-4)}{3} = 2</math>. ===For decimal fractions=== {{Main|Decimal representation}} If the integers can be represented by the [[Kleene plus]] <math>\mathcal{D}^+</math>, then the set of all signed-digit representations of the [[decimal fraction]]s, or [[Dyadic rational|<math>b</math>-adic rationals]] <math>\mathbb{Z}[1\backslash b]</math>, is given by <math>\mathcal{Q} = \mathcal{D}^+\times\mathcal{P}\times\mathcal{D}^*</math>, the [[Cartesian product]] of the [[Kleene plus]] <math>\mathcal{D}^+</math>, the set of all finite [[concatenation|concatenated]] strings of digits <math>d_n \ldots d_0</math> with at least one digit, the [[Singleton (mathematics)|singleton]] <math>\mathcal{P}</math> consisting of the [[radix point]] (<math>.</math> or <math>,</math>), and the [[Kleene star]] <math>\mathcal{D}^*</math>, the set of all finite [[concatenation|concatenated]] strings of digits <math>d_{-1} \ldots d_{-m}</math>, with <math>m,n\in\mathbb{N}</math>. Each signed-digit representation <math>q \in \mathcal{Q}</math> has a [[Valuation (algebra)|valuation]] <math>v_\mathcal{D}:\mathcal{Q}\rightarrow\mathbb{Z}[1\backslash b]</math> :<math>v_\mathcal{D}(q) = \sum_{i=-m}^{n}f_\mathcal{D}(d_{i})b^{i}</math> ===For real numbers=== {{Main|Construction of the reals#Construction from Cauchy sequences}} If the integers can be represented by the [[Kleene plus]] <math>\mathcal{D}^+</math>, then the set of all signed-digit representations of the [[real numbers]] <math>\mathbb{R}</math> is given by <math>\mathcal{R} = \mathcal{D}^+ \times \mathcal{P} \times \mathcal{D}^\mathbb{N}</math>, the [[Cartesian product]] of the [[Kleene plus]] <math>\mathcal{D}^+</math>, the set of all finite [[concatenation|concatenated]] strings of digits <math>d_n \ldots d_0</math> with at least one digit, the [[Singleton (mathematics)|singleton]] <math>\mathcal{P}</math> consisting of the [[radix point]] (<math>.</math> or <math>,</math>), and the [[Cantor space]] <math>\mathcal{D}^\mathbb{N}</math>, the set of all [[infinity|infinite]] [[concatenation|concatenated]] strings of digits <math>d_{-1} d_{-2} \ldots</math>, with <math>n\in\mathbb{N}</math>. Each signed-digit representation <math>r \in \mathcal{R}</math> has a [[Valuation (algebra)|valuation]] <math>v_\mathcal{D}:\mathcal{R}\rightarrow\mathbb{R}</math> :<math>v_\mathcal{D}(r) = \sum_{i=-\infty}^{n}f_\mathcal{D}(d_{i})b^{i}</math>. The [[infinite series]] always [[Convergent series|converges]] to a finite real number. ===For other number systems=== All base-<math>b</math> numerals can be represented as a subset of <math>\mathcal{D}^\mathbb{Z}</math>, the set of all [[doubly infinite sequence]]s of digits in <math>\mathcal{D}</math>, where <math>\mathbb{Z}</math> is the set of [[integers]], and the [[Ring (mathematics)|ring]] of base-<math>b</math> numerals is represented by the [[formal power series ring]] <math>\mathbb{Z}[[b,b^{-1}]]</math>, the doubly infinite series :<math>\sum_{i = -\infty}^{\infty}a_i b^i</math> where <math>a_i\in\mathbb{Z}</math> for <math>i\in\mathbb{Z}</math>. ====Integers modulo powers of {{math|''b''}}==== The set of all signed-digit representations of the [[Integers modulo n|integers modulo <math>b^n</math>]], <math>\mathbb{Z}\backslash b^n\mathbb{Z}</math> is given by the set <math>\mathcal{D}^n</math>, the set of all finite [[concatenation|concatenated]] strings of digits <math>d_{n - 1} \ldots d_0</math> of length <math>n</math>, with <math>n\in\mathbb{N}</math>. Each signed-digit representation <math>m \in \mathcal{D}^n</math> has a [[Valuation (algebra)|valuation]] <math>v_\mathcal{D}:\mathcal{D}^n\rightarrow\mathbb{Z}/b^n\mathbb{Z}</math> :<math>v_\mathcal{D}(m) \equiv \sum_{i=0}^{n - 1}f_\mathcal{D}(d_{i})b^{i} \bmod b^n</math> ====Prüfer groups==== A [[Prüfer group]] is the [[quotient group]] <math>\mathbb{Z}(b^\infty) = \mathbb{Z}[1\backslash b]/\mathbb{Z}</math> of the integers and the <math>b</math>-adic rationals. The set of all signed-digit representations of the [[Prüfer group]] is given by the [[Kleene star]] <math>\mathcal{D}^*</math>, the set of all finite [[concatenation|concatenated]] strings of digits <math>d_{1} \ldots d_{n}</math>, with <math>n\in\mathbb{N}</math>. Each signed-digit representation <math>p \in \mathcal{D}^*</math> has a [[Valuation (algebra)|valuation]] <math>v_\mathcal{D}:\mathcal{D}^*\rightarrow\mathbb{Z}(b^\infty)</math> :<math>v_\mathcal{D}(m) \equiv \sum_{i=1}^{n}f_\mathcal{D}(d_{i})b^{-i} \bmod 1</math> ====Circle group==== The [[circle group]] is the quotient group <math>\mathbb{T} = \mathbb{R}/\mathbb{Z}</math> of the integers and the real numbers. The set of all signed-digit representations of the [[circle group]] is given by the [[Cantor space]] <math>\mathcal{D}^\mathbb{N}</math>, the set of all right-infinite concatenated strings of digits <math>d_{1} d_{2} \ldots</math>. Each signed-digit representation <math>m \in \mathcal{D}^n</math> has a [[Valuation (algebra)|valuation]] <math>v_\mathcal{D}:\mathcal{D}^\mathbb{N}\rightarrow\mathbb{T}</math> :<math>v_\mathcal{D}(m) \equiv \sum_{i=1}^{\infty}f_\mathcal{D}(d_{i})b^{-i} \bmod 1</math> The [[infinite series]] always [[Convergent series|converges]]. ===={{math|''b''}}-adic integers==== The set of all signed-digit representations of the [[p-adic integers|<math>b</math>-adic integers]], <math>\mathbb{Z}_b</math> is given by the [[Cantor space]] <math>\mathcal{D}^\mathbb{N}</math>, the set of all left-infinite concatenated strings of digits <math>\ldots d_{1} d_{0}</math>. Each signed-digit representation <math>m \in \mathcal{D}^n</math> has a [[Valuation (algebra)|valuation]] <math>v_\mathcal{D}:\mathcal{D}^\mathbb{N}\rightarrow\mathbb{Z}_{b}</math> :<math>v_\mathcal{D}(m) = \sum_{i=0}^{\infty}f_\mathcal{D}(d_{i})b^{i}</math> ===={{math|''b''}}-adic solenoids==== The set of all signed-digit representations of the [[Solenoid (mathematics)#p-adic solenoids|<math>b</math>-adic solenoids]], <math>\mathbb{T}_b</math> is given by the [[Cantor space]] <math>\mathcal{D}^\mathbb{Z}</math>, the set of all [[doubly infinite]] concatenated strings of digits <math>\ldots d_{1} d_{0} d_{-1} \ldots</math>. Each signed-digit representation <math>m \in \mathcal{D}^n</math> has a [[Valuation (algebra)|valuation]] <math>v_\mathcal{D}:\mathcal{D}^\mathbb{Z}\rightarrow\mathbb{T}_{b}</math> :<math>v_\mathcal{D}(m) = \sum_{i=-\infty}^{\infty}f_\mathcal{D}(d_{i})b^{i}</math> ==In written and spoken language== ===Indo-Aryan languages=== The oral and written forms of numbers in the [[Indo-Aryan languages]] use a negative numeral (e.g., "un" in [[Hindi]] and [[Bengali language|Bengali]], "un" or "unna" in [[Punjabi_Language|Punjabi]], "ekon" in [[Marathi_Language|Marathi]]) for the numbers between 11 and 90 that end with a nine. The numbers followed by their names are shown for Punjabi below (the prefix "ik" means "one"):<ref>[http://quizlet.com/16314536/punjabi-numbers-1-100-flash-cards/ Punjabi numbers] from [[Quizlet]]</ref> * 19 unni, 20 vih, 21 ikki * 29 unatti, 30 tih, 31 ikatti * 39 untali, 40 chali, 41 iktali * 49 unanja, 50 panjah, 51 ikvanja * 59 unahat, 60 sath, 61 ikahat * 69 unattar, 70 sattar, 71 ikhattar * 79 unasi, 80 assi, 81 ikiasi * 89 unanve, 90 nabbe, 91 ikinnaven. Similarly, the [[Sesotho]] language utilizes negative numerals to form 8's and 9's. * 8 robeli (/Ro-bay-dee/) meaning "break two" i.e. two fingers down * 9 robong (/Ro-bong/) meaning "break one" i.e. one finger down ===Classical Latin=== In [[Classical Latin]],<ref>J. Matthew Harrington (2016) [https://cpb-us-w2.wpmucdn.com/campuspress.yale.edu/dist/4/3253/files/2018/08/Harrington-Latin-Grammar-2016.pdf Synopsis of Ancient Latin Grammar]</ref> integers 18 and 19 did not even have a spoken, nor written form including corresponding parts for "eight" or "nine" in practice - despite them being in existence. Instead, in Classic Latin, *18 = duodēvīgintī ("two taken from twenty"), (IIXX or XIIX), *19 = ūndēvīgintī ("one taken from twenty"), (IXX or XIX) *20 = vīgintī ("twenty"), (XX). For upcoming integer numerals [28, 29, 38, 39, ..., 88, 89] the additive form in the language had been much more common, however, for the listed numbers, the above form was still preferred. Hence, approaching thirty, numerals were expressed as:<ref>{{Citation |title=duodetriginta |date=2020-03-25 |work=Wiktionary, the free dictionary |url=https://en.wiktionary.org/w/index.php?title=duodetriginta&oldid=58999568 |access-date=2024-04-07 |language=en}}</ref> *28 = duodētrīgintā ("two taken from thirty"), less frequently also yet vīgintī octō / octō et vīgintī ("twenty eight / eight and twenty"), (IIXXX or XXIIX versus XXVIII, latter having been fully outcompeted.) *29 = ūndētrīgintā ("one taken from thirty") despite the less preferred form was also at their disposal. This is one of the main foundations of contemporary historians' reasoning, explaining why the subtractive I- and II- was so common in this range of cardinals compared to other ranges. Numerals 98 and 99 could also be expressed in both forms, yet "two to hundred" might have sounded a bit odd - clear evidence is the scarce occurrence of these numbers written down in a subtractive fashion in authentic sources. ===Finnish Language=== There is yet another language having this feature (by now, only in traces), however, still in active use today. This is the [[Finnish Language]], where the (spelled out) numerals are used this way should a digit of 8 or 9 occur. The scheme is like this:<ref>{{Cite web |title=Kielitoimiston sanakirja |url=https://www.kielitoimistonsanakirja.fi/#/perusluku |access-date=2024-04-07 |website=www.kielitoimistonsanakirja.fi}}</ref> *1 = "yksi" (Note: yhd- or yht- mostly when about to be declined; e.g. "yhdessä" = "together, as one [entity]") *2 = "kaksi" (Also note: kahde-, kahte- when declined) *3 = "kolme" *4 = "neljä" ... *7 = "seitsemän" *8 = "kah(d)eksan" (two left [for it to reach it]) *9 = "yh(d)eksän" (one left [for it to reach it]) *10 = "kymmenen" (ten) Above list is no special case, it consequently appears in larger cardinals as well, e.g.: *399 = "kolmesataayhdeksänkymmentäyhdeksän" Emphasizing of these attributes stay present even in the shortest colloquial forms of numerals: *1 = "yy" *2 = "kaa" *3 = "koo" ... *7 = "seiska" *8 = "kasi" *9 = "ysi" *10 = "kymppi" However, this phenomenon has no influence on written numerals, the Finnish use the standard Western-Arabic decimal notation. ===Time keeping=== In the [[English language]] it is common to refer to times as, for example, 'seven to three', 'to' performing the negation. ==Other systems== There exist other signed-digit bases such that the base <math>b \neq b_{+} + b_{-} + 1</math>. A notable examples of this is [[Booth encoding]], which has a digit set <math>\mathcal{D} = \lbrace\bar{1},0,1\rbrace</math> with <math>b_{+} = 1</math> and <math>b_{-} = 1</math>, but which uses a base <math>b = 2 < 3 = b_{+} + b_{-} + 1</math>. The standard [[binary numeral system]] would only use digits of value <math>\lbrace0,1\rbrace</math>. Note that non-standard signed-digit representations are not unique. For instance: : <math>0111_{\mathcal{D}} = 4 + 2 + 1 = 7</math> : <math>10\bar{1}1_{\mathcal{D}} = 8 - 2 + 1 = 7</math> : <math>1\bar{1}11_{\mathcal{D}} = 8 - 4 + 2 + 1 = 7</math> : <math>100\bar{1}_{\mathcal{D}} = 8 - 1 = 7</math> The [[non-adjacent form]] (NAF) of Booth encoding does guarantee a unique representation for every integer value. However, this only applies for integer values. For example, consider the following [[Repeating decimal#Extension to other bases|repeating binary]] numbers in NAF, : <math>\frac{2}{3} = 0.\overline{10}_{\mathcal{D}} = 1.\overline{0\bar{1}}_{\mathcal{D}}</math> ==See also== * [[Balanced ternary]] * [[Negative base]] * [[Redundant binary representation]] ==Notes and references== {{reflist}} * J. P. Balantine (1925) "A Digit for Negative One", [[American Mathematical Monthly]] 32:302. * Lui Han, Dongdong Chen, Seok-Bum Ko, Khan A. Wahid [http://homepage.usask.ca/~doc220/index_files/doc/C12.pdf "Non-speculative Decimal Signed Digit Adder"] from Department of Electrical and Computer Engineering, [[University of Saskatchewan]]. {{Authority control}} {{Use dmy dates|date=December 2020}} {{DEFAULTSORT:Signed-Digit Representation}} [[Category:Non-standard positional numeral systems]] [[Category:Number theory]] [[Category:Ring theory]] [[Category:Arithmetic dynamics]] [[Category:Coding theory]] [[Category:Formal languages]] [[Category:Sign (mathematics)]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Authority control
(
edit
)
Template:Citation
(
edit
)
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite web
(
edit
)
Template:Distinguish
(
edit
)
Template:Main
(
edit
)
Template:Math
(
edit
)
Template:Numeral systems
(
edit
)
Template:Reflist
(
edit
)
Template:See also
(
edit
)
Template:Short description
(
edit
)
Template:Sidebar with collapsible groups
(
edit
)
Template:Use dmy dates
(
edit
)