Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Skew-Hermitian matrix
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Matrix whose conjugate transpose is its negative (additive inverse)}} __NOTOC__ In [[linear algebra]], a [[square matrix]] with [[Complex number|complex]] entries is said to be '''skew-Hermitian''' or '''anti-Hermitian''' if its [[conjugate transpose]] is the negative of the original matrix.<ref>{{harvtxt|Horn|Johnson|1985}}, §4.1.1; {{harvtxt|Meyer|2000}}, §3.2</ref> That is, the matrix <math>A</math> is skew-Hermitian if it satisfies the relation {{Equation box 1 |indent = |title= |equation = <math>A \text{ skew-Hermitian} \quad \iff \quad A^\mathsf{H} = -A</math> |cellpadding= 6 |border |border colour = #0073CF |background colour=#F5FFFA}} where <math>A^\textsf{H}</math> denotes the conjugate transpose of the matrix <math>A</math>. In component form, this means that {{Equation box 1 |indent = |title= |equation = <math>A \text{ skew-Hermitian} \quad \iff \quad a_{ij} = -\overline{a_{ji}}</math> |cellpadding= 6 |border |border colour = #0073CF |background colour=#F5FFFA}} for all indices <math>i</math> and <math>j</math>, where <math>a_{ij}</math> is the element in the <math>i</math>-th row and <math>j</math>-th column of <math>A</math>, and the overline denotes [[complex conjugate|complex conjugation]]. Skew-Hermitian matrices can be understood as the complex versions of real [[Skew-symmetric matrix|skew-symmetric matrices]], or as the matrix analogue of the purely imaginary numbers.<ref name=HJ85S412>{{harvtxt|Horn|Johnson|1985}}, §4.1.2</ref> The set of all skew-Hermitian <math>n \times n</math> matrices forms the <math>u(n)</math> [[Lie algebra]], which corresponds to the Lie group [[Unitary group|U(<var>n</var>)]]. The concept can be generalized to include [[linear transformation]]s of any [[complex number|complex]] [[vector space]] with a [[sesquilinear]] [[Norm (mathematics)|norm]]. Note that the [[adjoint operator|adjoint]] of an operator depends on the [[scalar product]] considered on the <math>n</math> dimensional complex or real space <math>K^n</math>. If <math>(\cdot\mid\cdot) </math> denotes the scalar product on <math> K^n</math>, then saying <math> A</math> is skew-adjoint means that for all <math>\mathbf u, \mathbf v \in K^n</math> one has <math> (A \mathbf u \mid \mathbf v) = - (\mathbf u \mid A \mathbf v)</math>. [[Imaginary number]]s can be thought of as skew-adjoint (since they are like <math>1 \times 1</math> matrices), whereas [[real number]]s correspond to [[self-adjoint]] operators. ==Example== For example, the following matrix is skew-Hermitian <math display="block"> A = \begin{bmatrix} -i & +2 + i \\ -2 + i & 0 \end{bmatrix}</math> because <math display="block"> -A = \begin{bmatrix} i & -2 - i \\ 2 - i & 0 \end{bmatrix} = \begin{bmatrix} \overline{-i} & \overline{-2 + i} \\ \overline{2 + i} & \overline{0} \end{bmatrix} = \begin{bmatrix} \overline{-i} & \overline{2 + i} \\ \overline{-2 + i} & \overline{0} \end{bmatrix}^\mathsf{T} = A^\mathsf{H} </math> ==Properties== * The eigenvalues of a skew-Hermitian matrix are all purely imaginary (and possibly zero). Furthermore, skew-Hermitian matrices are [[normal matrix|normal]]. Hence they are diagonalizable and their eigenvectors for distinct eigenvalues must be orthogonal.<ref>{{harvtxt|Horn|Johnson|1985}}, §2.5.2, §2.5.4</ref> * All entries on the [[main diagonal]] of a skew-Hermitian matrix have to be pure [[imaginary number|imaginary]]; i.e., on the imaginary axis (the number zero is also considered purely imaginary).<ref>{{harvtxt|Meyer|2000}}, Exercise 3.2.5</ref> * If <math>A</math> and <math>B</math> are skew-Hermitian, then {{tmath|aA + bB}} is skew-Hermitian for all [[real number|real]] [[scalar (mathematics)|scalars]] <math>a</math> and <math>b</math>.<ref name=HJ85S411>{{harvtxt|Horn|Johnson|1985}}, §4.1.1</ref> * <math>A</math> is skew-Hermitian ''if and only if'' <math>i A</math> (or equivalently, <math>-i A</math>) is [[Hermitian matrix|Hermitian]].<ref name=HJ85S411/> *<math>A</math> is skew-Hermitian ''if and only if'' the real part <math>\Re{(A)}</math> is [[skew-symmetric matrix|skew-symmetric]] and the imaginary part <math>\Im{(A)}</math> is [[symmetric matrix|symmetric]]. * If <math>A</math> is skew-Hermitian, then <math>A^k</math> is Hermitian if <math>k</math> is an even integer and skew-Hermitian if <math>k</math> is an odd integer. * <math>A</math> is skew-Hermitian if and only if <math>\mathbf{x}^\mathsf{H} A \mathbf{y} = -\overline{\mathbf{y}^\mathsf{H} A \mathbf{x}}</math> for all vectors <math>\mathbf x, \mathbf y</math>. * If <math>A</math> is skew-Hermitian, then the [[matrix exponential]] <math>e^A</math> is [[unitary matrix|unitary]]. * The space of skew-Hermitian matrices forms the [[Lie algebra]] <math>u(n)</math> of the [[Lie group]] <math>U(n)</math>. ==Decomposition into Hermitian and skew-Hermitian== * The sum of a square matrix and its conjugate transpose <math>\left(A + A^\mathsf{H}\right)</math> is Hermitian. * The difference of a square matrix and its conjugate transpose <math>\left(A - A^\mathsf{H}\right)</math> is skew-Hermitian. This implies that the [[commutator]] of two Hermitian matrices is skew-Hermitian. * An arbitrary square matrix <math>C</math> can be written as the sum of a Hermitian matrix <math>A</math> and a skew-Hermitian matrix <math>B</math>: <math display="block">C = A + B \quad\mbox{with}\quad A = \frac{1}{2}\left(C + C^\mathsf{H}\right) \quad\mbox{and}\quad B = \frac{1}{2}\left(C - C^\mathsf{H}\right)</math> ==See also== * [[Bivector (complex)]] * [[Hermitian matrix]] * [[Normal matrix]] * [[Skew-symmetric matrix]] * [[Unitary matrix]] ==Notes== <references/> ==References== * {{Citation | last1=Horn | first1=Roger A. | last2=Johnson | first2=Charles R. | title=Matrix Analysis | publisher=[[Cambridge University Press]] | isbn=978-0-521-38632-6 | year=1985}}. * {{Citation | last1=Meyer | first1=Carl D. | title=Matrix Analysis and Applied Linear Algebra | url=http://www.matrixanalysis.com/ | publisher=[[Society for Industrial and Applied Mathematics|SIAM]] | isbn=978-0-89871-454-8 | year=2000}}. {{Matrix classes}} [[Category:Matrices (mathematics)]] [[Category:Abstract algebra]] [[Category:Linear algebra]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Citation
(
edit
)
Template:Equation box 1
(
edit
)
Template:Harvtxt
(
edit
)
Template:Matrix classes
(
edit
)
Template:Short description
(
edit
)
Template:Tmath
(
edit
)