Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Specific activity
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Activity per unit mass of a radionuclide}} {{About|specific activity radioactivity|the use in biochemistry|Enzyme assay#Specific activity}} {{technical|date=January 2014}} {{Infobox physical quantity | name = Activity | image = Radium 226 radiation source 1.jpg | caption = Ra 226 radiation source. Activity 3300 Bq (3.3 kBq) | unit = [[becquerel]] | otherunits = [[Rutherford (unit)|rutherford]], [[Curie (unit)|curie]] | symbols = ''A'' | baseunits = s<sup>−1</sup> | dimension = | extensive = | intensive = | derivations = }} {{Infobox physical quantity | name = Specific activity | image = | caption = | unit = [[becquerel]] per [[kilogram]] | otherunits = [[Rutherford (unit)|rutherford]] per [[gram]], [[Curie (unit)|curie]] per gram | symbols = ''a'' | baseunits = s<sup>−1</sup>⋅kg<sup>−1</sup> | dimension = | extensive = | intensive = | derivations = }} '''Specific activity''' (symbol ''a'') is the activity [[per unit mass]] of a [[radionuclide]] and is a physical property of that radionuclide.<ref name="BreemanJong2003">{{cite journal |last1=Breeman |first1=Wouter A. P. |last2=Jong |first2=Marion |last3=Visser |first3=Theo J. |last4=Erion |first4=Jack L. |last5=Krenning |first5=Eric P. |title=Optimising conditions for radiolabelling of DOTA-peptides with <sup>90</sup>Y, <sup>111</sup>In and <sup>177</sup>Lu at high specific activities |journal=European Journal of Nuclear Medicine and Molecular Imaging |volume=30 |issue=6 |year=2003 |pages=917–920 |issn=1619-7070 |doi=10.1007/s00259-003-1142-0 |pmid=12677301|s2cid=9652140 }}</ref><ref name="de GoeijBonardi2005">{{cite journal |last1=de Goeij |first1=J. J. M. |last2=Bonardi |first2=M. L. |title=How do we define the concepts specific activity, radioactive concentration, carrier, carrier-free and no-carrier-added? |journal=Journal of Radioanalytical and Nuclear Chemistry |volume=263 |issue=1 |year=2005 |pages=13–18 |issn=0236-5731 |doi=10.1007/s10967-005-0004-6|s2cid=97433328 }}</ref> It is usually given in units of becquerel per kilogram (Bq/kg), but another commonly used unit of specific activity is the curie per gram (Ci/g). In the context of [[radioactivity]], activity or total activity (symbol ''A'') is a [[physical quantity]] defined as the number of radioactive transformations per second that occur in a particular [[radionuclide]].<ref>{{cite journal |title=SI units for ionizing radiation: becquerel |journal=Resolutions of the 15th CGPM |date=1975 |issue=Resolution 8 |access-date=3 July 2015 |url=http://www.bipm.org/en/CGPM/db/15/8/}}</ref> The unit of activity is the ''[[becquerel]]'' (symbol Bq), which is defined equivalent to [[reciprocal second]]s (symbol s<sup>−1</sup>). The older, non-SI unit of activity is the [[Curie (unit)|''curie'']] (Ci), which is {{val|3.7|e=10}} radioactive decays per second. Another unit of activity is the [[Rutherford (unit)|''rutherford'']], which is defined as {{val|1|e=6}} radioactive decays per second. The specific activity should not be confused with level of exposure to [[ionizing radiation]] and thus the exposure or [[absorbed dose]], which is the quantity important in assessing the effects of ionizing radiation on humans. Since the probability of [[radioactive decay]] for a given radionuclide within a set time interval is fixed (with some slight exceptions, see [[Radioactive decay#Changing rates|changing decay rates]]), the number of decays that occur in a given time of a given mass (and hence a specific number of atoms) of that radionuclide is also a fixed (ignoring statistical fluctuations). == Formulation == {{see also|Radioactive decay#Rates}} ===Relationship between ''λ'' and T<sub>1/2</sub>=== Radioactivity is expressed as the decay rate of a particular radionuclide with decay constant ''λ'' and the number of atoms ''N'': : <math>-\frac{dN}{dt} = \lambda N.</math> The integral solution is described by [[exponential decay]]: : <math>N = N_0 e^{-\lambda t},</math> where ''N''<sub>0</sub> is the initial quantity of atoms at time ''t'' = 0. [[Half-life]] '''T<sub>1/2</sub>''' is defined as the length of time for half of a given quantity of radioactive atoms to undergo radioactive decay: : <math>\frac{N_0}{2} = N_0 e^{-\lambda T_{1/2}}.</math> Taking the natural logarithm of both sides, the half-life is given by : <math>T_{1/2} = \frac{\ln 2}{\lambda}.</math> Conversely, the decay constant ''λ'' can be derived from the half-life ''T''<sub>1/2</sub> as : <math>\lambda = \frac{\ln 2}{T_{1/2}}.</math> ===Calculation of specific activity=== The mass of the radionuclide is given by : <math>{m} = \frac{N}{N_\text{A}} [\text{mol}] \times {M} [\text{g/mol}],</math> where ''M'' is [[molar mass]] of the radionuclide, and ''N''<sub>A</sub> is the [[Avogadro constant]]. Practically, the [[mass number]] ''A'' of the radionuclide is within a fraction of 1% of the molar mass expressed in g/mol and can be used as an approximation. Specific radioactivity ''a'' is defined as radioactivity per unit mass of the radionuclide: : <math>a [\text{Bq/g}] = \frac{\lambda N}{M N/N_\text{A}} = \frac{\lambda N_\text{A}}{M}.</math> Thus, specific radioactivity can also be described by : <math>a = \frac{N_\text{A} \ln 2}{T_{1/2} \times M}.</math> This equation is simplified to : <math>a [\text{Bq/g}] \approx \frac{4.17 \times 10^{23} [\text{mol}^{-1}]}{T_{1/2} [s] \times M [\text{g/mol}]}.</math> When the unit of half-life is in years instead of seconds: : <math>a [\text{Bq/g}] = \frac{4.17 \times 10^{23} [\text{mol}^{-1}]}{T_{1/2}[\text{year}] \times 365 \times 24 \times 60 \times 60 [\text{s/year}] \times M} \approx \frac{1.32 \times 10^{16} [\text{mol}^{-1}{\cdot}\text{s}^{-1}{\cdot}\text{year}]}{T_{1/2} [\text{year}] \times M [\text{g/mol}]}.</math> ==== Example: specific activity of Ra-226 ==== For example, specific radioactivity of [[radium-226]] with a half-life of 1600 years is obtained as : <math chem>a_\text{Ra-226}[\text{Bq/g}] = \frac{1.32 \times 10^{16}}{1600 \times 226} \approx 3.7 \times 10^{10} [\text{Bq/g}].</math> This value derived from radium-226 was defined as unit of radioactivity known as the [[Curie (unit)|curie]] (Ci). ===Calculation of half-life from specific activity=== Experimentally measured specific activity can be used to calculate the [[half-life]] of a radionuclide. Where decay constant ''λ'' is related to specific radioactivity ''a'' by the following equation: : <math>\lambda = \frac{a \times M}{N_\text{A}}.</math> Therefore, the half-life can also be described by : <math>T_{1/2} = \frac{N_\text{A} \ln 2}{a \times M}.</math> ==== Example: half-life of Rb-87 ==== One gram of [[Isotopes of rubidium|rubidium-87]] and a radioactivity count rate that, after taking [[solid angle]] effects into account, is consistent with a decay rate of 3200 decays per second corresponds to a specific activity of {{val|3.2|e=6|u=Bq/kg}}. Rubidium [[atomic mass]] is 87 g/mol, so one gram is 1/87 of a mole. Plugging in the numbers: : <math> T_{1/2} = \frac{N_\text{A} \times \ln 2}{a \times M} \approx \frac{6.022 \times 10^{23}\text{ mol}^{-1} \times 0.693} {3200\text{ s}^{-1}{\cdot}\text{g}^{-1} \times 87\text{ g/mol}} \approx 1.5 \times 10^{18}\text{ s} \approx 47\text{ billion years}. </math> ===Other calculations=== {{cleanup merge|Becquerel|21=section|date=July 2023}} For a given mass <math>m</math> (in grams) of an isotope with [[atomic mass]] <math>m_\text{a}</math> (in g/mol) and a [[half-life]] of <math>t_{1/2}</math> (in s), the radioactivity can be calculated using: :<math>A_\text{Bq} = \frac{m} {m_\text{a}} N_\text{A} \frac{\ln 2} {t_{1/2}}</math> With <math>N_\text{A}</math> = {{val|6.02214076|e=23|u=mol-1}}, the [[Avogadro constant]]. Since <math>m/m_\text{a}</math> is the number of moles (<math>n</math>), the amount of radioactivity <math>A</math> can be calculated by: :<math>A_\text{Bq} = nN_\text{A} \frac{\ln 2} {t_{1/2}}</math> For instance, on average each gram of [[potassium]] contains 117 micrograms of [[Potassium-40|<sup>40</sup>K]] (all other naturally occurring isotopes are stable) that has a <math>t_{1/2}</math> of {{val|1.277|e=9|u=years}} = {{val|4.030|e=16|u=s}},<ref>{{cite web|url=http://nucleardata.nuclear.lu.se/toi/nuclide.asp?iZA=190040 |title=Table of Isotopes decay data |publisher=[[Lund University]] |date=1990-06-01 |access-date=2014-01-12}}</ref> and has an atomic mass of 39.964 g/mol,<ref>{{cite web|url=http://physics.nist.gov/cgi-bin/Compositions/stand_alone.pl?ele=&ascii=html&isotype=some |title=Atomic Weights and Isotopic Compositions for All Elements |publisher=[[NIST]] |access-date=2014-01-12}}</ref> so the amount of radioactivity associated with a gram of potassium is 30 Bq. ==Examples== {| class="wikitable" !Isotope !Half-life !Mass of 1 curie !Specific Activity (a) (activity per 1 kg) |- | [[thorium-232|<sup>232</sup>Th]] || {{val|1.405|e=10}} years|| 9.1 tonnes || 4.07 MBq (110 μCi or 4.07 Rd) |- | [[uranium-238|<sup>238</sup>U]] ||{{val|4.471|e=9}} years|| 2.977 tonnes|| 12.58 MBq (340 μCi, or 12.58 Rd) |- | [[uranium-235|<sup>235</sup>U]] ||{{val|7.038|e=8}} years|| 463 kg || 79.92 MBq (2.160 mCi, or 79.92 Rd) |- | [[potassium-40|<sup>40</sup>K]] ||{{val|1.25|e=9}} years||140 kg || 262.7 MBq (7.1 mCi, or 262.7 Rd) |- | [[iodine-129|<sup>129</sup>I]] ||{{val|15.7|e=6}} years||5.66 kg || 6.66 GBq (180 mCi, or 6.66 kRd) |- | [[technetium-99|<sup>99</sup>Tc]] ||{{val|211|e=3}} years||58 g || 629 GBq (17 Ci, or 629 kRd) |- | [[plutonium-239|<sup>239</sup>Pu]] ||{{val|24.11|e=3}} years||16 g|| 2.331 TBq (63 Ci, or 2.331 MRd) |- | [[plutonium-240|<sup>240</sup>Pu]] || 6563 years || 4.4 g || 8.51 TBq (230 Ci, or 8.51MRd) |- | [[carbon-14|<sup>14</sup>C]] ||5730 years||0.22 g || 166.5 TBq (4.5 kCi, or 166.5 MRd) |- | [[radium-226|<sup>226</sup>Ra]] || 1601 years || 1.01 g || 36.63 TBq (990 Ci, or 36.63 MRd) |- | [[americium-241|<sup>241</sup>Am]] || 432.6 years || 0.29 g || 126.91 TBq (3.43 kCi, or 126.91 MRd) |- | [[plutonium-238|<sup>238</sup>Pu]] || 88 years || 59 mg || 629 TBq (17 kCi, or 629 MRd) |- | [[caesium-137|<sup>137</sup>Cs]] || 30.17 years || 12 mg || 3.071 PBq (83 kCi, or 3.071 GRd) |- | [[strontium-90|<sup>90</sup>Sr]] || 28.8 years || 7.2 mg || 5.143 PBq (139 kCi, or 5.143 GRd) |- | [[plutonium-241|<sup>241</sup>Pu]] || 14 years || 9.4 mg || 3.922 PBq (106 kCi, or 3.922 GRd) |- | [[tritium|<sup>3</sup>H]] || 12.32 years || 104 μg || 355.977 PBq (9.621 MCi, or 355.977 GRd) |- | [[radium-228|<sup>228</sup>Ra]] ||5.75 years||3.67 mg || 10.101 PBq (273 kCi, or 10.101 GRd) |- | [[cobalt-60|<sup>60</sup>Co]] ||1925 days||883 μg || 41.884 PBq (1.132 MCi, or 41.884 GRd) |- | [[polonium-210|<sup>210</sup>Po]] ||138 days||223 μg || 165.908 PBq (4.484 MCi, or 165.908 GRd) |- | [[iodine-131|<sup>131</sup>I]] ||8.02 days||8 μg || 4.625 EBq (125 MCi, or 4.625 TRd) |- | [[iodine-123|<sup>123</sup>I]] ||13 hours||518 ng || 71.41 EBq (1.93 GCi, or 71.41 TRd) |- | [[lead-212|<sup>212</sup>Pb]] ||10.64 hours||719 ng || 51.43 EBq (1.39 GCi, or 51.43 TRd) |} ==Applications== The specific activity of radionuclides is particularly relevant when it comes to select them for production for therapeutic pharmaceuticals, as well as for [[immunoassays]] or other diagnostic procedures, or assessing radioactivity in certain environments, among several other biomedical applications.<ref>Duursma, E. K. "Specific activity of radionuclides sorbed by marine sediments in relation to the stable element composition". Radioactive contamination of the marine environment (1973): 57–71.</ref><ref name="Wessels1984">{{cite journal |last1=Wessels |first1=Barry W. |title=Radionuclide selection and model absorbed dose calculations for radiolabeled tumor associated antibodies |journal=Medical Physics |volume=11 |issue=5 |year=1984 |pages=638–645 |issn=0094-2405 |doi=10.1118/1.595559 |pmid=6503879 |bibcode=1984MedPh..11..638W }}</ref><ref>{{Cite journal |author=I. Weeks |author2=I. Beheshti |author3=F. McCapra |author4=A. K. Campbell |author5=J. S. Woodhead |title = Acridinium esters as high-specific-activity labels in immunoassay |journal = Clinical Chemistry |volume = 29 |issue = 8 |pages = 1474–1479 |date=August 1983 |doi = 10.1093/clinchem/29.8.1474 |pmid = 6191885}}</ref><ref name="NevesKling2002">{{cite journal |last1=Neves |first1=M. |last2=Kling |first2=A. |last3=Lambrecht |first3=R. M. |title=Radionuclide production for therapeutic radiopharmaceuticals |journal=Applied Radiation and Isotopes |volume=57 |issue=5 |year=2002 |pages=657–664 |issn=0969-8043 |doi=10.1016/S0969-8043(02)00180-X |pmid=12433039|citeseerx=10.1.1.503.4385 }}</ref><ref name="Mausner1993">{{cite journal |last1=Mausner |first1=Leonard F. |title=Selection of radionuclides for radioimmunotherapy |journal=Medical Physics |volume=20 |issue=2 |year=1993 |pages=503–509 |issn=0094-2405 |doi=10.1118/1.597045 |pmid=8492758 |bibcode = 1993MedPh..20..503M }}</ref><ref name="MurrayMarten1987">{{cite journal |last1=Murray |first1=A. S. |last2=Marten |first2=R. |last3=Johnston |first3=A. |last4=Martin |first4=P. |title=Analysis for naturally {{sic|occur|ing|nolink=y}} radionuclides at environmental concentrations by gamma spectrometry|journal=Journal of Radioanalytical and Nuclear Chemistry |volume=115 |issue=2 |year=1987 |pages=263–288 |issn=0236-5731 |doi=10.1007/BF02037443|s2cid=94361207 }}</ref> ==References== {{Reflist}} ==Further reading== * {{cite journal |last1=Fetter |first1=Steve |last2=Cheng |first2=E. T. |last3=Mann |first3=F. M. |title=Long-term radioactive waste from fusion reactors: Part II |journal=[[Fusion Engineering and Design]] |volume=13 |issue=2 |year=1990 |pages=239–246 |issn=0920-3796 |doi=10.1016/0920-3796(90)90104-E |citeseerx=10.1.1.465.5945}} * {{cite journal |last1=Holland |first1=Jason P. |last2=Sheh |first2=Yiauchung |last3=Lewis |first3=Jason S. |title=Standardized methods for the production of high specific-activity zirconium-89 |journal=Nuclear Medicine and Biology |volume=36 |issue=7 |year=2009 |pages=729–739 |issn=0969-8051 |doi=10.1016/j.nucmedbio.2009.05.007 |pmid=19720285 |pmc=2827875}} * {{cite journal |last1=McCarthy |first1=Deborah W. |last2=Shefer |first2=Ruth E. |last3=Klinkowstein |first3=Robert E. |last4=Bass |first4=Laura A. |last5=Margeneau |first5=William H. |last6=Cutler |first6=Cathy S. |last7=Anderson |first7=Carolyn J. |last8=Welch |first8=Michael J. |title=Efficient production of high specific activity <sup>64</sup>Cu using a biomedical cyclotron |journal=Nuclear Medicine and Biology |volume=24 |issue=1 |year=1997 |pages=35–43 |issn=0969-8051 |doi=10.1016/S0969-8051(96)00157-6 |pmid=9080473}} {{Ionising radiation related quantities}} {{Authority control}} [[Category:Radioactivity quantities]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:About
(
edit
)
Template:Ambox
(
edit
)
Template:Authority control
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite web
(
edit
)
Template:Cleanup merge
(
edit
)
Template:Infobox physical quantity
(
edit
)
Template:Ionising radiation related quantities
(
edit
)
Template:Reflist
(
edit
)
Template:See also
(
edit
)
Template:Short description
(
edit
)
Template:Technical
(
edit
)
Template:Val
(
edit
)