Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Spherical cap
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{short description|Section of a sphere}} [[File:Spherical cap diagram.tiff|thumb|An example of a spherical cap in blue (and another in red)]] In [[geometry]], a '''spherical cap''' or '''spherical dome''' is a portion of a [[sphere]] or of a [[ball (mathematics)|ball]] cut off by a [[plane (mathematics)|plane]]. It is also a [[spherical segment]] of one base, i.e., bounded by a single plane. If the plane passes through the [[center (geometry)|center]] of the sphere (forming a [[great circle]]), so that the height of the cap is equal to the [[radius]] of the sphere, the spherical cap is called a ''[[Sphere#Hemisphere|hemisphere]]''. ==Volume and surface area== The [[volume]] of the spherical cap and the area of the curved surface may be calculated using combinations of * The radius <math>r</math> of the sphere * The radius <math>a</math> of the base of the cap * The height <math>h</math> of the cap * The [[Spherical coordinate system|polar angle]] <math>\theta</math> between the rays from the center of the sphere to the apex of the cap (the pole) and the edge of the [[disk (mathematics)|disk]] forming the base of the cap. These variables are inter-related through the formulas <math> a = r \sin \theta</math>, <math>h = r ( 1 - \cos \theta )</math>, <math>2hr = a^2 + h^2</math>, and <math>2 h a = (a^2 + h^2)\sin \theta</math>. {| class="wikitable" ! ! Using <math>r</math> and <math>h</math> ! Using <math>a</math> and <math>h</math> ! Using <math>r</math> and <math>\theta</math> |- ! Volume | <math>V = \frac {\pi h^2}{3} (3r-h)</math> <ref name="handbook">{{citation|title=Handbook of Mathematics for Engineers and Scientists|first1=Andrei D|last1=Polyanin|first2=Alexander V.|last2=Manzhirov|publisher=CRC Press|year=2006|isbn=9781584885023|page=69|url=https://books.google.com/books?id=ge6nk9W0BCcC&pg=PA69}}.</ref> | <math>V = \frac{1}{6}\pi h (3a^2 + h^2)</math> | <math>V = \frac{\pi}{3} r^3 (2+\cos\theta) (1-\cos\theta)^2 </math> |- ! Area | <math>A = 2 \pi r h</math><ref name="handbook"/> | <math>A =\pi (a^2 + h^2)</math> | <math>A=2 \pi r^2 (1-\cos \theta)</math> |- ! Constraints | <math> 0 \leq h \leq 2 r </math> | <math> 0 \leq a, \; 0 \leq h </math> | <math> 0 \leq \theta \leq \pi, \; 0 \leq r</math> |} If <math>\phi</math> denotes the [[latitude]] in [[geographic coordinates]], then <math>\theta+\phi = \pi/2 = 90^\circ\,</math>, and <math>\cos \theta = \sin \phi</math>. === Deriving the surface area intuitively from the spherical sector volume === Note that aside from the calculus based argument below, the area of the spherical cap may be derived from [[Spherical sector#Volume|the volume <math>V_{sec}</math> of the spherical sector]], by an intuitive argument,<ref>{{cite web |last1=Shekhtman |first1=Zor |title=Unizor - Geometry3D - Spherical Sectors |url=https://www.youtube.com/watch?v=ts3J5onzvQg&t=8m54s |archive-url=https://ghostarchive.org/varchive/youtube/20211222/ts3J5onzvQg |archive-date=2021-12-22 |url-status=live|website=YouTube |publisher=Zor Shekhtman |access-date=31 Dec 2018}}{{cbignore}}</ref> as :<math>A = \frac{3}{r}V_{sec} = \frac{3}{r} \frac{2\pi r^2h}{3} = 2\pi rh\,.</math> The intuitive argument is based upon summing the total sector volume from that of infinitesimal [[Tetrahedron|triangular pyramids]]. Utilizing the [[Pyramid (geometry)#Volume|pyramid (or cone) volume]] formula of <math>V = \frac{1}{3} bh'</math>, where <math>b</math> is the infinitesimal [[area]] of each pyramidal base (located on the surface of the sphere) and <math>h'</math> is the height of each pyramid from its base to its apex (at the center of the sphere). Since each <math>h'</math>, in the limit, is constant and equivalent to the radius <math>r</math> of the sphere, the sum of the infinitesimal pyramidal bases would equal the area of the spherical sector, and: :<math>V_{sec} = \sum{V} = \sum\frac{1}{3} bh' = \sum\frac{1}{3} br = \frac{r}{3} \sum b = \frac{r}{3} A</math> ===Deriving the volume and surface area using calculus === [[File:Spherical cap from rotation.svg|thumb|Rotating the green area creates a spherical cap with height <math>h</math> and sphere radius <math>r</math>.]] The volume and area formulas may be derived by examining the rotation of the function :<math>f(x)=\sqrt{r^2-(x-r)^2}=\sqrt{2rx-x^2}</math> for <math>x \in [0,h]</math>, using the formulas the [[Surface of revolution|surface of the rotation]] for the area and the [[Solid of revolution|solid of the revolution]] for the volume. The area is :<math>A = 2\pi\int_0^h f(x) \sqrt{1+f'(x)^2} \,dx </math> The derivative of <math>f</math> is :<math>f'(x) = \frac{r-x}{\sqrt{2rx-x^2}} </math> and hence :<math>1+f'(x)^2 = \frac{r^2}{2rx-x^2} </math> The formula for the area is therefore :<math>A = 2\pi\int_0^h \sqrt{2rx-x^2} \sqrt{\frac{r^2}{2rx-x^2}} \,dx = 2\pi \int_0^h r\,dx = 2\pi r \left[x\right]_0^h = 2 \pi r h </math> The volume is :<math>V = \pi \int_0^h f(x)^2 \,dx = \pi \int_0^h (2rx-x^2) \,dx = \pi \left[rx^2-\frac13x^3\right]_0^h = \frac{\pi h^2}{3} (3r - h)</math> == Moment of inertia == The moments of inertia of a spherical cap (where the z-axis is the symmetrical axis) about the principal axes (center) of the sphere are: :<math>J_{zz,\text{cap}} = \frac{m h \left( 3 h^2 - 15 h R + 20 R^2 \right)}{10 \left( 3 R - h \right)} </math> :<math>J_{xx,\text{cap}} = J_{yy, \text{cap}} =\frac{m \left( -9 h^3 + 45 h^2 R - 80 h R^2 + 60 R^3 \right)}{20 \left( 3 R - h \right)} </math> where ''m'' and ''h'' are, respectively, the mass and height of the spherical cap and ''R'' is the radius of the entire sphere. ==Applications== ===Volumes of union and intersection of two intersecting spheres=== The volume of the [[union (set theory)|union]] of two intersecting spheres of radii <math>r_1</math> and <math>r_2</math> is <ref>{{cite journal|first1=Michael L.|last1=Connolly|year=1985|doi=10.1021/ja00291a006|title=Computation of molecular volume|journal= Journal of the American Chemical Society|pages=1118β1124|volume=107|issue=5}}</ref> :<math> V = V^{(1)}-V^{(2)}\,,</math> where :<math>V^{(1)} = \frac{4\pi}{3}r_1^3 +\frac{4\pi}{3}r_2^3</math> is the sum of the volumes of the two isolated spheres, and :<math>V^{(2)} = \frac{\pi h_1^2}{3}(3r_1-h_1)+\frac{\pi h_2^2}{3}(3r_2-h_2)</math> the sum of the volumes of the two spherical caps forming their intersection. If <math>d \le r_1+r_2</math> is the distance between the two sphere centers, elimination of the variables <math>h_1</math> and <math>h_2</math> leads to<ref>{{cite journal|doi=10.1016/0097-8485(82)80006-5|year=1982|title=A method to compute the volume of a molecule|journal= Computers & Chemistry|first1=R.|last1=Pavani|first2=G.|last2=Ranghino|volume=6|issue=3|pages=133β135}}</ref><ref>{{cite journal|first1=A.|last1=Bondi|doi=10.1021/j100785a001|year=1964|title=Van der Waals volumes and radii|journal= The Journal of Physical Chemistry|volume=68|issue=3|pages=441β451}}</ref> :<math>V^{(2)} = \frac{\pi}{12d}(r_1+r_2-d)^2 \left( d^2+2d(r_1+r_2)-3(r_1-r_2)^2 \right)\,.</math> === Volume of a spherical cap with a curved base === The volume of a spherical cap with a curved base can be calculated by considering two spheres with radii <math>r_1</math> and <math>r_2</math>, separated by some distance <math>d</math>, and for which their surfaces intersect at <math>x=h</math>. That is, the curvature of the base comes from sphere 2. The volume is thus the difference between sphere 2's cap (with height <math>(r_2-r_1)-(d-h)</math>) and sphere 1's cap (with height <math>h</math>), <math>\begin{align} V & = \frac{\pi h^2}{3}(3r_1-h) - \frac{\pi [(r_2-r_1)-(d-h)]^2}{3}[3r_2-((r_2-r_1)-(d-h))]\,, \\ V & = \frac{\pi h^2}{3}(3r_1-h) - \frac{\pi}{3}(d-h)^3\left(\frac{r_2-r_1}{d-h}-1\right)^2\left[\frac{2r_2+r_1}{d-h}+1\right]\,. \end{align} </math> This formula is valid only for configurations that satisfy <math>0<d<r_2</math> and <math>d-(r_2-r_1)<h\leq r_1</math>. If sphere 2 is very large such that <math>r_2\gg r_1</math>, hence <math>d \gg h</math> and <math>r_2\approx d</math>, which is the case for a spherical cap with a base that has a negligible curvature, the above equation is equal to the volume of a spherical cap with a flat base, as expected. === Areas of intersecting spheres === Consider two intersecting spheres of radii <math>r_1</math> and <math>r_2</math>, with their centers separated by distance <math>d</math>. They intersect if :<math>|r_1-r_2|\leq d \leq r_1+r_2</math> From the law of cosines, the polar angle of the spherical cap on the sphere of radius <math>r_1</math> is :<math>\cos \theta = \frac{r_1^2-r_2^2+d^2}{2r_1d}</math> Using this, the surface area of the spherical cap on the sphere of radius <math>r_1</math> is :<math>A_1 = 2\pi r_1^2 \left( 1+\frac{r_2^2-r_1^2-d^2}{2 r_1 d} \right)</math> === Surface area bounded by parallel disks === The curved surface area of the [[spherical segment]] bounded by two parallel disks is the difference of surface areas of their respective spherical caps. For a sphere of radius <math>r</math>, and caps with heights <math>h_1</math> and <math>h_2</math>, the area is :<math>A=2 \pi r |h_1 - h_2|\,,</math> or, using geographic coordinates with latitudes <math>\phi_1</math> and <math>\phi_2</math>,<ref>{{cite book|title=Successful Software Development|author=Scott E. Donaldson, Stanley G. Siegel|url=https://books.google.com/books?id=lrix5MNRiu4C&pg=PA354|access-date=29 August 2016|isbn=9780130868268|year=2001}}</ref> :<math>A=2 \pi r^2 |\sin \phi_1 - \sin \phi_2|\,,</math> For example, assuming the Earth is a sphere of radius 6371 km, the surface area of the arctic (north of the Arctic Circle, at latitude 66.56Β° as of August 2016<ref>{{cite web|url=http://www.neoprogrammics.com/obliquity_of_the_ecliptic/ |title=Obliquity of the Ecliptic (Eps Mean) |publisher=Neoprogrammics.com |access-date=2014-05-13}}</ref>) is {{math|1= 2''Ο''{{thinsp}}⋅{{thinsp}}6371<sup>2</sup>{{thinsp}}{{abs|sin 90Β° − sin 66.56Β°}}}} = {{convert|21.04|e6km2|e6mi2|abbr=unit}}, or {{math|1= 0.5{{thinsp}}⋅{{thinsp}}{{abs|sin 90Β° − sin 66.56Β°}}}} = 4.125% of the total surface area of the Earth. This formula can also be used to demonstrate that half the surface area of the Earth lies between latitudes 30Β° South and 30Β° North in a spherical zone which encompasses all of the [[tropics]]. == Generalizations == === Sections of other solids === The '''spheroidal dome''' is obtained by sectioning off a portion of a [[spheroid]] so that the resulting dome is [[circular symmetry|circularly symmetric]] (having an axis of rotation), and likewise the [[ellipsoidal dome]] is derived from the [[ellipsoid]]. === Hyperspherical cap === Generally, the <math>n</math>-dimensional volume of a hyperspherical cap of height <math>h</math> and radius <math>r</math> in <math>n</math>-dimensional Euclidean space is given by:<ref name="S-Li">{{cite journal|title=Concise Formulas for the Area and Volume of a Hyperspherical Cap|first1=S.|last1=Li|journal=Asian Journal of Mathematics and Statistics| year=2011| pages=66-70|url=https://docsdrive.com/pdfs/ansinet/ajms/2011/66-70.pdf}}</ref> <math display="block">V = \frac{\pi ^ {\frac{n-1}{2}}\, r^{n}}{\,\Gamma \left ( \frac{n+1}{2} \right )} \int_{0}^{\arccos\left(\frac{r-h}{r}\right)}\sin^n (\theta) \,\mathrm{d}\theta</math> where <math>\Gamma</math> (the [[gamma function]]) is given by <math> \Gamma(z) = \int_0^\infty t^{z-1} \mathrm{e}^{-t}\,\mathrm{d}t </math>. The formula for <math>V</math> can be expressed in terms of the volume of the unit [[n-ball]] <math display="inline">C_n = \pi^{n/2} / \Gamma[1+\frac{n}{2}]</math> and the [[hypergeometric function]] <math>{}_{2}F_{1}</math> or the [[regularized incomplete beta function]] <math>I_x(a,b)</math> as <math display="block">V = C_{n} \, r^{n} \left( \frac{1}{2}\, - \,\frac{r-h}{r} \,\frac{\Gamma[1+\frac{n}{2}]}{\sqrt{\pi}\,\Gamma[\frac{n+1}{2}]} {\,\,}_{2}F_{1}\left(\tfrac{1}{2},\tfrac{1-n}{2};\tfrac{3}{2};\left(\tfrac{r-h}{r}\right)^{2}\right)\right) = \frac{1}{2}C_{n} \, r^n I_{(2rh-h^2)/r^2} \left(\frac{n+1}{2}, \frac{1}{2} \right),</math> and the area formula <math>A</math> can be expressed in terms of the area of the unit n-ball <math display="inline">A_{n}={2\pi^{n/2}/\Gamma[\frac{n}{2}]}</math> as <math display="block">A =\frac{1}{2}A_{n} \, r^{n-1} I_{(2rh-h^2)/r^2} \left(\frac{n-1}{2}, \frac{1}{2} \right),</math> where <math>0\le h\le r </math>. A. Chudnov<ref name="Minimax-86">{{cite journal|title=On minimax signal generation and reception algorithms (engl. transl.) | first1=Alexander M.|last1=Chudnov|journal=Problems of Information Transmission| year=1986| volume=22| number=4| pages=49β54|url=https://www.researchgate.net/publication/269008140_Minimax_signal_generation_and_reception_algorithms}}</ref> derived the following formulas: <math display="block"> A = A_n r^{n-1} p_ { n-2 } (q),\, V = C_n r^{n} p_n (q) , </math> where <math display="block"> q = 1-h/r (0 \le q \le 1 ), p_n (q) =(1-G_n(q)/G_n(1))/2 , </math> <math display="block"> G _n(q)= \int _0^q (1-t^2) ^ { (n-1) /2 } dt .</math> For odd <math> n=2k+1 </math>: <math display="block"> G_n(q) = \sum_{i=0}^k (-1) ^i \binom k i \frac {q^{2i+1}} {2i+1} .</math> ==== Asymptotics ==== If <math> n \to \infty </math> and <math>q\sqrt n = \text{const.}</math>, then <math> p_n (q) \to 1- F({q \sqrt n}) </math> where <math> F() </math> is the integral of the [[standard normal distribution]].<ref name= "Game-91">{{cite journal|title=Game-theoretical problems of synthesis of signal generation and reception algorithms (engl. transl.)|first1=Alexander M|last1=Chudnov|journal=Problems of Information Transmission | year=1991 | volume=27|number=3|pages=57β65|url=https://www.researchgate.net/publication/268648510_Game-theoretical_problems_of_synthesis_of_signal_generation_and_reception_algorithms}}</ref> A more quantitative bound is <math> A/(A_n r^{n-1}) = n^{\Theta(1)} \cdot [(2-h/r)h/r]^{n/2} </math>. For large caps (that is when <math>(1-h/r)^4\cdot n = O(1)</math> as <math>n\to \infty</math>), the bound simplifies to <math>n^{\Theta(1)} \cdot e^{-(1-h/r)^2n/2} </math>.<ref>{{cite conference |last1= Becker |first1= Anja |last2= Ducas |first2= LΓ©o |last3= Gama |first3= Nicolas |last4= Laarhoven |first4= Thijs |date= 10 January 2016 |title= New directions in nearest neighbor searching with applications to lattice sieving |conference= Twenty-seventh Annual ACM-SIAM Symposium on Discrete Algorithms (SODA '16), Arlington, Virginia |editor-last= Krauthgamer |editor-first= Robert |publisher= Society for Industrial and Applied Mathematics |publication-place= Philadelphia |pages= 10β24 |isbn= 978-1-61197-433-1 }}</ref> == See also == {{Portal|Maths}} * [[Circular segment]] β the analogous 2D object * [[Solid angle]] β contains formula for n-sphere caps * [[Spherical segment]] * [[Spherical sector]] * [[Spherical wedge]] == References == {{reflist}} == Further reading == * {{cite journal|first1= Timothy J. | last1=Richmond |title=Solvent accessible surface area and excluded volume in proteins: Analytical equation for overlapping spheres and implications for the hydrophobic effect |journal= Journal of Molecular Biology|year=1984 | doi=10.1016/0022-2836(84)90231-6 | pmid=6548264 |volume=178 | number=1 |pages=63β89 }} * {{cite journal| first1=Rolf | last1=Lustig |title=Geometry of four hard fused spheres in an arbitrary spatial configuration |journal= Molecular Physics|year=1986 |volume=59 | number=2 | pages=195β207 |bibcode=1986MolPh..59..195L |doi= 10.1080/00268978600102011}} * {{cite journal | first1=K. D. | last1=Gibson |first2=Harold A. |last2=Scheraga |title=Volume of the intersection of three spheres of unequal size: a simplified formula |year=1987 | journal= The Journal of Physical Chemistry|volume=91 | number =15 | pages =4121β4122 | doi=10.1021/j100299a035}} * {{cite journal | first1=K. D. | last1=Gibson |first2=Harold A. | last2=Scheraga |title=Exact calculation of the volume and surface area of fused hard-sphere molecules with unequal atomic radii |year=1987 | journal= Molecular Physics|volume=62 | number=5 | pages=1247β1265 | bibcode=1987MolPh..62.1247G |doi=10.1080/00268978700102951}} * {{ cite journal | first1=Michel | last1=Petitjean |title=On the analytical calculation of van der Waals surfaces and volumes: some numerical aspects |journal= Journal of Computational Chemistry|year=1994 | volume=15 | number=5 | pages=507β523 | doi=10.1002/jcc.540150504}} * {{cite journal | first1=J. A. | last1=Grant |first2=B. T. | last2=Pickup |title=A Gaussian description of molecular shape |journal= The Journal of Physical Chemistry|year=1995 | volume=99 | number= 11 |doi=10.1021/j100011a016 |pages=3503β3510}} * {{cite journal | first1= Jan | last1=Busa | first2=Jozef | last2=Dzurina |first3=Edik | last3=Hayryan | first4=Shura | last4=Hayryan |title=ARVO: A fortran package for computing the solvent accessible surface area and the excluded volume of overlapping spheres via analytic equations |journal= Computer Physics Communications|bibcode=2005CoPhC.165...59B |year=2005 | volume=165 | issue=1 | pages=59β96 | doi=10.1016/j.cpc.2004.08.002}} == External links == {{Commons category|Spherical caps}} * {{MathWorld |id=SphericalCap |title=Spherical cap}} Derivation and some additional formulas. * [http://formularium.org/?go=81 Online calculator for spherical cap volume and area]. * [http://mathforum.org/dr.math/faq/formulas/faq.sphere.html#spherecap Summary of spherical formulas]. [[Category:Spherical geometry]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Cbignore
(
edit
)
Template:Citation
(
edit
)
Template:Cite book
(
edit
)
Template:Cite conference
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite web
(
edit
)
Template:Commons category
(
edit
)
Template:Convert
(
edit
)
Template:Math
(
edit
)
Template:MathWorld
(
edit
)
Template:Portal
(
edit
)
Template:Reflist
(
edit
)
Template:SfnRef
(
edit
)
Template:Short description
(
edit
)
Template:Sister project
(
edit
)