Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Star refinement
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
In [[mathematics]], specifically in the study of [[topology]] and [[open cover]]s of a [[topological space]] ''X'', a '''star refinement''' is a particular kind of [[refinement of an open cover]] of ''X''. A related concept is the notion of '''barycentric refinement'''. Star refinements are used in the definition of [[fully normal space]] and in one definition of [[uniform space]]. It is also useful for stating a characterization of [[paracompactness]]. ==Definitions== The general definition makes sense for arbitrary coverings and does not require a topology. Let <math>X</math> be a set and let <math>\mathcal U</math> be a [[cover (topology)|covering]] of <math>X,</math> that is, <math display="inline">X = \bigcup \mathcal U.</math> Given a subset <math>S</math> of <math>X,</math> the '''star''' of <math>S</math> with respect to <math>\mathcal U</math> is the union of all the sets <math>U \in \mathcal U</math> that intersect <math>S,</math> that is, <math display=block>\operatorname{st}(S, \mathcal U) = \bigcup\big\{U \in \mathcal U: S\cap U \neq \varnothing\big\}.</math> Given a point <math>x \in X,</math> we write <math>\operatorname{st}(x,\mathcal U)</math> instead of <math>\operatorname{st}(\{x\}, \mathcal U).</math> A covering <math>\mathcal U</math> of <math>X</math> is a [[refinement (topology)|refinement]] of a covering <math>\mathcal V</math> of <math>X</math> if every <math>U \in \mathcal U</math> is contained in some <math>V \in \mathcal V.</math> The following are two special kinds of refinement. The covering <math>\mathcal U</math> is called a '''barycentric refinement''' of <math>\mathcal V</math> if for every <math>x \in X</math> the star <math>\operatorname{st}(x,\mathcal U)</math> is contained in some <math>V \in \mathcal V.</math>{{sfn|Dugundji|1966|loc=Definition VIII.3.1, p. 167}}{{sfn|Willard|2004|loc=Definition 20.1}} The covering <math>\mathcal U</math> is called a '''star refinement''' of <math>\mathcal V</math> if for every <math>U \in \mathcal U</math> the star <math>\operatorname{st}(U, \mathcal U)</math> is contained in some <math>V \in \mathcal V.</math>{{sfn|Dugundji|1966|loc=Definition VIII.3.3, p. 167}}{{sfn|Willard|2004|loc=Definition 20.1}} ==Properties and Examples== Every star refinement of a cover is a barycentric refinement of that cover. The converse is not true, but a barycentric refinement of a barycentric refinement is a star refinement.{{sfn|Dugundji|1966|loc=Prop. VIII.3.4, p. 167}}{{sfn|Willard|2004|loc=Problem 20B}}<ref>{{cite web |title=Barycentric Refinement of a Barycentric Refinement is a Star Refinement |url=https://math.stackexchange.com/questions/3168765 |website=Mathematics Stack Exchange |language=en}}</ref><ref>{{cite web |last1=Brandsma |first1=Henno |title=On paracompactness, full normality and the like |date=2003 |url=http://at.yorku.ca/p/a/c/a/02.pdf}}</ref> Given a [[metric space]] <math>X,</math> let <math>\mathcal V=\{B_\epsilon(x): x\in X\}</math> be the collection of all open balls <math>B_\epsilon(x)</math> of a fixed radius <math>\epsilon>0.</math> The collection <math>\mathcal U=\{B_{\epsilon/2}(x): x\in X\}</math> is a barycentric refinement of <math>\mathcal V,</math> and the collection <math>\mathcal W=\{B_{\epsilon/3}(x): x\in X\}</math> is a star refinement of <math>\mathcal V.</math> ==See also== * {{annotated link|Family of sets}} ==Notes== {{reflist}} ==References== * {{Dugundji Topology}} <!--{{sfn|Dugundji|1966|p=}}--> * {{Willard General Topology}} <!--{{sfn|Willard|2004|p=}}--> [[Category:General topology]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Annotated link
(
edit
)
Template:Cite web
(
edit
)
Template:Dugundji Topology
(
edit
)
Template:Reflist
(
edit
)
Template:Sfn
(
edit
)
Template:Willard General Topology
(
edit
)