Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Steinhaus–Moser notation
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{short description|Notation for extremely large numbers}} In [[mathematics]], '''Steinhaus–Moser notation''' is a [[mathematical notation|notation]] for expressing certain [[large number]]s. It is an extension (devised by [[Leo Moser]]) of [[Hugo Steinhaus]]'s polygon notation.<ref>Hugo Steinhaus, ''Mathematical Snapshots'', Oxford University Press 1969<sup>3</sup>, {{ISBN|0195032675}}, pp. 28-29</ref> == Definitions == :[[image:Triangle-n.svg|20px|n in a triangle]] a number {{math|<VAR >n</VAR >}} in a '''triangle''' means {{math|<VAR >n<sup>n</sup></VAR >}}. :[[image:Square-n.svg|20px|n in a square]] a number {{math|<VAR >n</VAR >}} in a '''square''' is equivalent to "the number {{math|<VAR >n</VAR >}} inside {{math|<VAR >n</VAR >}} triangles, which are all nested." :[[image:Pentagon-n.svg|20px|n in a pentagon]] a number {{math|<VAR >n</VAR >}} in a '''pentagon''' is equivalent to "the number {{math|<VAR >n</VAR >}} inside {{math|<VAR >n</VAR >}} squares, which are all nested." etc.: {{math|<VAR >n</VAR >}} written in an ({{math|<VAR >m</VAR > + 1}})-sided polygon is equivalent to "the number {{math|<VAR >n</VAR >}} inside {{math|<VAR >n</VAR >}} nested {{math|<VAR >m</VAR >}}-sided polygons". In a series of nested polygons, they are [[Association (mathematics)|associated]] inward. The number {{math|<VAR >n</VAR >}} inside two triangles is equivalent to {{math|<VAR >n<sup>n</sup></VAR >}} inside one triangle, which is equivalent to {{math|<VAR >n<sup>n</sup></VAR >}} raised to the power of {{math|<VAR >n<sup>n</sup></VAR >}}. Steinhaus defined only the triangle, the square, and the '''circle''' [[image:Circle-n.svg|20px|n in a circle]], which is equivalent to the pentagon defined above. == Special values == Steinhaus defined: *'''mega''' is the number equivalent to 2 in a circle: {{tooltip|2=C(2) = S(S(2))|②}} *'''megiston''' is the number equivalent to 10 in a circle: ⑩ '''Moser's number''' is the number represented by "2 in a megagon". '''Megagon''' is here the name of a polygon with "mega" sides (not to be confused with the [[megagon|polygon with one million sides]]). Alternative notations: *use the functions square(x) and triangle(x) *let {{math|<VAR>M</VAR>(<VAR >n</VAR >, <VAR >m</VAR >, <VAR >p</VAR >)}} be the number represented by the number {{math|<VAR >n</VAR >}} in {{math|<VAR >m</VAR >}} nested {{math|<VAR >p</VAR >}}-sided polygons; then the rules are: **<math>M(n,1,3) = n^n</math> **<math>M(n,1,p+1) = M(n,n,p)</math> **<math>M(n,m+1,p) = M(M(n,1,p),m,p)</math> * and **mega = <math>M(2,1,5)</math> **megiston = <math>M(10,1,5)</math> **moser = <math>M(2,1,M(2,1,5))</math> ==Mega== A mega, ②, is already a very large number, since ② = square(square(2)) = square(triangle(triangle(2))) = square(triangle(2<sup>2</sup>)) = square(triangle(4)) = square(4<sup>4</sup>) = square(256) = triangle(triangle(triangle(...triangle(256)...))) [256 triangles] = triangle(triangle(triangle(...triangle(256<sup>256</sup>)...))) [255 triangles] ~ triangle(triangle(triangle(...triangle(3.2317 × 10<sup>616</sup>)...))) [255 triangles] ... Using the other notation: mega = <math>M(2,1,5) = M(256,256,3)</math> With the function <math>f(x)=x^x</math> we have mega = <math>f^{256}(256) = f^{258}(2)</math> where the superscript denotes a [[Iterated function|functional power]], not a numerical power. We have (note the convention that powers are evaluated from right to left): *<math>M(256,2,3) =</math> <math>(256^{\,\!256})^{256^{256}}=256^{256^{257}}</math> *<math>M(256,3,3) =</math> <math>(256^{\,\!256^{257}})^{256^{256^{257}}}=256^{256^{257}\times 256^{256^{257}}}=256^{256^{257+256^{257}}}</math>≈<math>256^{\,\!256^{256^{257}}}</math> Similarly: *<math>M(256,4,3) \approx</math> <math>{\,\!256^{256^{256^{256^{257}}}}}</math> *<math>M(256,5,3) \approx</math> <math>{\,\!256^{256^{256^{256^{256^{257}}}}}}</math> *<math>M(256,6,3) \approx</math> <math>{\,\!256^{256^{256^{256^{256^{256^{257}}}}}}}</math> etc. Thus: *mega = <math>M(256,256,3)\approx(256\uparrow)^{256}257</math>, where <math>(256\uparrow)^{256}</math> denotes a functional power of the function <math>f(n)=256^n</math>. Rounding more crudely (replacing the 257 at the end by 256), we get mega ≈ <math>256\uparrow\uparrow 257</math>, using [[Knuth's up-arrow notation]]. After the first few steps the value of <math>n^n</math> is each time approximately equal to <math>256^n</math>. In fact, it is even approximately equal to <math>10^n</math> (see also [[Large numbers#Approximate arithmetic|approximate arithmetic for very large numbers]]). Using base 10 powers we get: *<math>M(256,1,3)\approx 3.23\times 10^{616}</math> *<math>M(256,2,3)\approx10^{\,\!1.99\times 10^{619}}</math> (<math>\log _{10} 616</math> is added to the 616) *<math>M(256,3,3)\approx10^{\,\!10^{1.99\times 10^{619}}}</math> (<math>619</math> is added to the <math>1.99\times 10^{619}</math>, which is negligible; therefore just a 10 is added at the bottom) *<math>M(256,4,3)\approx10^{\,\!10^{10^{1.99\times 10^{619}}}}</math> ... *mega = <math>M(256,256,3)\approx(10\uparrow)^{255}1.99\times 10^{619}</math>, where <math>(10\uparrow)^{255}</math> denotes a functional power of the function <math>f(n)=10^n</math>. Hence <math>10\uparrow\uparrow 257 < \text{mega} < 10\uparrow\uparrow 258</math> ==Moser's number<!--This section is linked from [[Moser's number]]-->== It has been proven that in [[Conway chained arrow notation]], :<math>\mathrm{moser} < 3\rightarrow 3\rightarrow 4\rightarrow 2,</math> and, in [[Knuth's up-arrow notation]], :<math>\mathrm{moser} < f^{3}(4) = f(f(f(4))), \text{ where } f(n) = 3 \uparrow^n 3.</math> Therefore, Moser's number, although incomprehensibly large, is vanishingly small compared to [[Graham's number]]:<ref>[http://www-users.cs.york.ac.uk/~susan/cyc/b/gmproof.htm Proof that G >> M]</ref> :<math>\mathrm{moser} \ll 3\rightarrow 3\rightarrow 64\rightarrow 2 < f^{64}(4) = \text{Graham's number}.</math> == See also == * [[Ackermann function]] == References == <references /> ==External links== * [http://www.mrob.com/pub/math/largenum.html Robert Munafo's Large Numbers] * [http://www-users.cs.york.ac.uk/~susan/cyc/b/big.htm Factoid on Big Numbers] *[http://mathworld.wolfram.com/Megistron.html Megistron at mathworld.wolfram.com] (Steinhaus referred to this number as "megiston" with no "r".) *[http://mathworld.wolfram.com/CircleNotation.html Circle notation at mathworld.wolfram.com] *[https://sites.google.com/site/pointlesslargenumberstuff/home/2/steinhausmoser Steinhaus-Moser Notation - Pointless Large Number Stuff] {{Hyperoperations}} {{Large numbers}} {{DEFAULTSORT:Steinhaus-Moser notation}} [[Category:Mathematical notation]] [[Category:Large numbers]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Hyperoperations
(
edit
)
Template:ISBN
(
edit
)
Template:Large numbers
(
edit
)
Template:Math
(
edit
)
Template:Short description
(
edit
)
Template:Tooltip
(
edit
)