Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Stoneham number
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
In [[mathematics]], the '''Stoneham numbers''' are a certain class of [[real number]]s, named after [[mathematician]] [[Richard G. Stoneham]] (1920β1996).<ref>{{Cite web |last=Weisstein |first=Eric W. |title=Stoneham Number |url=https://mathworld.wolfram.com/StonehamNumber.html |access-date=2025-01-31 |website=mathworld.wolfram.com |language=en}}</ref> For [[coprime]] numbers ''b'', ''c'' > 1, the Stoneham number α<sub>''b'',''c''</sub> is defined as :<math>\alpha_{b,c} = \sum_{n=c^k>1} \frac{1}{b^nn} = \sum_{k=1}^\infty \frac{1}{b^{c^k}c^k}</math> It was shown by Stoneham in 1973 that α<sub>''b'',''c''</sub> is ''b''-[[normal number|normal]] whenever ''c'' is an odd [[prime number|prime]] and ''b'' is a [[primitive root modulo n|primitive root]] of ''c''<sup>2</sup>. In 2002, Bailey & Crandall showed that coprimality of ''b'', ''c'' > 1 is sufficient for ''b''-normality of α<sub>''b'',''c''</sub>.<ref>{{Cite journal |last1=Bailey |first1=David H. |last2=Crandall |first2=Richard E. |date=2002 |title=Random Generators and Normal Numbers |url=https://www.tandfonline.com/doi/abs/10.1080/10586458.2002.10504704 |journal=Experimental Mathematics |volume=11|issue=4 |pages=527β546 |doi=10.1080/10586458.2002.10504704 |s2cid=8944421 }}</ref> == References == {{reflist}} *{{citation | last1 = Bailey | first1 = D. H. | author1-link = David H. Bailey (mathematician) | last2 = Crandall | first2 = R. E. | author2-link = Richard Crandall | issue = 4 | journal = Experimental Mathematics | pages = 527β546 | title = Random generators and normal numbers | url = http://www.emis.de/journals/EM/expmath/volumes/11/11.4/pp527_546.pdf | volume = 11 | year = 2002 | doi=10.1080/10586458.2002.10504704| s2cid = 8944421 }}. *{{cite book | last=Bugeaud | first=Yann | title=Distribution modulo one and Diophantine approximation | series=Cambridge Tracts in Mathematics | volume=193 | location=Cambridge | publisher=[[Cambridge University Press]] | year=2012 | isbn=978-0-521-11169-0 | zbl=1260.11001}} *{{cite journal | zbl=0276.10028 | last=Stoneham | first=R.G. | title=On absolute $(j,Ξ΅)$-normality in the rational fractions with applications to normal numbers | journal=[[Acta Arithmetica]] | volume=22 | issue=3 | pages=277β286 | year=1973 | doi=10.4064/aa-22-3-277-286 | doi-access=free }} *{{cite journal | zbl=0276.10029 | last=Stoneham | first=R.G. | title=On the uniform Ξ΅-distribution of residues within the periods of rational fractions with applications to normal numbers | journal=[[Acta Arithmetica]] | volume=22 | issue=4 | pages=371β389 | year=1973 | doi=10.4064/aa-22-4-371-389 | doi-access=free }} [[Category:Eponymous numbers in mathematics]] [[Category:Number theory]] [[Category:Sets of real numbers]] {{numtheory-stub}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Citation
(
edit
)
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite web
(
edit
)
Template:Numtheory-stub
(
edit
)
Template:Reflist
(
edit
)