Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Strachey method for magic squares
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{One source|date=September 2024}} The '''Strachey method for magic squares''' is an [[algorithm]] for generating [[magic square]]s of [[singly even]] order 4''k'' + 2. An example of magic square of order 6 constructed with the Strachey method: {| class="wikitable" style="margin-left:auto;margin-right:auto;text-align:center;width:20em;height:20em;table-layout:fixed;" |- ! colspan="6" | Example |- |35 || 1 || 6 || 26 || 19 || 24 |- | 3 || 32 || 7 || 21 || 23 || 25 |- | 31 || 9 || 2 || 22 || 27 || 20 |- | 8 || 28 || 33 || 17 || 10 || 15 |- | 30 || 5 || 34 || 12 || 14 || 16 |- | 4 || 36 || 29 || 13 || 18 || 11 |} Strachey's method of construction of singly even magic square of order ''n'' = 4''k'' + 2. '''1.''' Divide the grid into 4 quarters each having ''n''<sup>2</sup>/4 cells and name them crosswise thus {| class="wikitable" style="margin-left:auto;margin-right:auto;text-align:center;width:4em;height:4em;table-layout:fixed;" |- |A || C |- |D || B |} '''2.''' Using the [[Siamese method]] (De la Loubère method) complete the individual magic squares of odd order 2''k'' + 1 in subsquares '''A''', '''B''', '''C''', '''D''', first filling up the sub-square '''A''' with the numbers 1 to ''n''<sup>2</sup>/4, then the sub-square '''B''' with the numbers ''n''<sup>2</sup>/4 + 1 to 2''n''<sup>2</sup>/4,then the sub-square '''C''' with the numbers 2''n''<sup>2</sup>/4 + 1 to 3''n''<sup>2</sup>/4, then the sub-square '''D''' with the numbers 3''n''<sup>2</sup>/4 + 1 to ''n''<sup>2</sup>. As a running example, we consider a 10×10 magic square, where we have divided the square into four quarters. The quarter '''A''' contains a magic square of numbers from 1 to 25, '''B''' a magic square of numbers from 26 to 50, '''C''' a magic square of numbers from 51 to 75, and '''D''' a magic square of numbers from 76 to 100. {| class="wikitable" style="margin-left:auto;margin-right:auto;text-align:center;width:30em;height:30em;table-layout:fixed;" |- | style="background-color: silver;"|17 || style="background-color: silver;"|24 || style="background-color: silver;"|1 || style="background-color: silver;"|8 || style="background-color: silver;"|15 || 67 || 74 || 51 || 58 || 65 |- | style="background-color: silver;"|23 || style="background-color: silver;"|5 || style="background-color: silver;"|7 || style="background-color: silver;"|14 || style="background-color: silver;"|16 || 73 || 55 || 57 || 64 || 66 |- | style="background-color: silver;"|4 || style="background-color: silver;"|6 || style="background-color: silver;"|13 || style="background-color: silver;"|20 || style="background-color: silver;"|22 || 54 || 56 || 63 || 70 || 72 |- | style="background-color: silver;"|10 || style="background-color: silver;"|12 || style="background-color: silver;"|19 || style="background-color: silver;"|21 || style="background-color: silver;"|3 || 60 || 62 || 69 || 71 || 53 |- | style="background-color: silver;"|11 || style="background-color: silver;"|18 || style="background-color: silver;"|25 || style="background-color: silver;"|2 || style="background-color: silver;"|9 || 61 || 68 || 75 || 52 || 59 |- | 92 || 99 || 76 || 83 || 90 || style="background-color: silver;"|42 || style="background-color: silver;"|49 || style="background-color: silver;"|26 || style="background-color: silver;"|33 || style="background-color: silver;"|40 |- | 98 || 80 || 82 || 89 || 91 || style="background-color: silver;"|48 || style="background-color: silver;"|30 || style="background-color: silver;"|32 || style="background-color: silver;"|39 || style="background-color: silver;"|41 |- | 79 || 81 || 88 || 95 || 97 || style="background-color: silver;"|29 || style="background-color: silver;"|31 || style="background-color: silver;"|38 || style="background-color: silver;"|45 || style="background-color: silver;"|47 |- | 85 || 87 || 94 || 96 || 78 || style="background-color: silver;"|35 || style="background-color: silver;"|37 || style="background-color: silver;"|44 || style="background-color: silver;"|46 || style="background-color: silver;"|28 |- | 86 || 93 || 100 || 77 || 84 || style="background-color: silver;"|36 || style="background-color: silver;"|43 || style="background-color: silver;"|50 || style="background-color: silver;"|27 || style="background-color: silver;"|34 |} '''3.''' Exchange the leftmost '''k''' columns in sub-square '''A''' with the corresponding columns of sub-square '''D'''. {| class="wikitable" style="margin-left:auto;margin-right:auto;text-align:center;width:30em;height:30em;table-layout:fixed;" |- | '''92''' || '''''99''''' || 1 || 8 || 15 || 67 || 74 || 51 || 58 || 65 |- |'''98''' || '''80''' || 7 || 14 || 16 || 73 || 55 || 57 || 64 || 66 |- |'''79''' || '''81''' || 13 || 20 || 22 || 54 || 56 || 63 || 70 || 72 |- |'''85''' || '''87''' || 19 || 21 || 3 || 60 || 62 || 69 || 71 || 53 |- |'''86''' || '''93''' || 25 || 2 || 9 || 61 || 68 || 75 || 52 || 59 |- |'''17''' || '''24''' || 76 || 83 || 90 || 42 || 49 || 26 || 33 || 40 |- |'''23''' || '''5''' || 82 || 89 || 91 || 48 || 30 || 32 || 39 || 41 |- |'''4''' || '''6''' || 88 || 95 || 97 || 29 || 31 || 38 || 45 || 47 |- |'''10''' || '''12''' || 94 || 96 || 78 || 35 || 37 || 44 || 46 || 28 |- |'''11''' || '''18''' || 100 || 77 || 84 || 36 || 43 || 50 || 27 || 34 |} '''4.''' Exchange the rightmost '''k - 1''' columns in sub-square '''C''' with the corresponding columns of sub-square '''B'''. {| class="wikitable" style="margin-left:auto;margin-right:auto;text-align:center;width:30em;height:30em;table-layout:fixed;" |- | 92 || 99 || 1 || 8 || 15 || 67 || 74 || 51 || 58 || '''40''' |- |98 || 80 || 7 || 14 || 16 || 73 || 55 || 57 || 64 || '''41''' |- |79 || 81 || 13 || 20 || 22 || 54 || 56 || 63 || 70 || '''47''' |- |85 || 87 || 19 || 21 || 3 || 60 || 62 || 69 || 71 || '''28''' |- |86 || 93 || 25 || 2 || 9 || 61 || 68 || 75 || 52 || '''34''' |- |17 || 24 || 76 || 83 || 90 || 42 || 49 || 26 || 33 || '''65''' |- |23 || 5 || 82 || 89 || 91 || 48 || 30 || 32 || 39 || '''66''' |- |4 || 6 || 88 || 95 || 97 || 29 || 31 || 38 || 45 || '''72''' |- |10 || 12 || 94 || 96 || 78 || 35 || 37 || 44 || 46 || '''53''' |- |11 || 18 || 100 || 77 || 84 || 36 || 43 || 50 || 27 || '''59''' |} '''5.''' Exchange the middle cell of the leftmost column of sub-square '''A''' with the corresponding cell of sub-square '''D'''. Exchange the central cell in sub-square '''A''' with the corresponding cell of sub-square '''D'''. {| class="wikitable" style="margin-left:auto;margin-right:auto;text-align:center;width:30em;height:30em;table-layout:fixed;" |- |92 || 99 || 1 || 8 || 15 || 67 || 74 || 51 || 58 || 40 |- |98 || 80 || 7 || 14 || 16 || 73 || 55 || 57 || 64 || 41 |- |'''4''' || 81 || '''88''' || 20 || 22 || 54 || 56 || 63 || 70 || 47 |- |85 || 87 || 19 || 21 || 3 || 60 || 62 || 69 || 71 || 28 |- |86 || 93 || 25 || 2 || 9 || 61 || 68 || 75 || 52 || 34 |- |17 || 24 || 76 || 83 || 90 || 42 || 49 || 26 || 33 || 65 |- |23 || 5 || 82 || 89 || 91 || 48 || 30 || 32 || 39 || 66 |- |'''79''' || 6 || '''13''' || 95 || 97 || 29 || 31 || 38 || 45 || 72 |- |10 || 12 || 94 || 96 || 78 || 35 || 37 || 44 || 46 || 53 |- |11 || 18 || 100 || 77 || 84 || 36 || 43 || 50 || 27 || 59 |} The result is a magic square of order ''n''=4''k'' + 2.<ref>W W Rouse Ball Mathematical Recreations and Essays, (1911)</ref> ==References== {{reflist}} ==See also== *[[Conway's LUX method for magic squares]] *[[Siamese method]] {{DEFAULTSORT:Strachey Method For Magic Squares}} [[Category:Magic squares]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:One source
(
edit
)
Template:Reflist
(
edit
)