Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Subsidence
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Downward vertical movement of the Earth's surface}} {{distinguish|Atmospheric subsidence}} [[File:The Crooked House.jpg|thumb|300px|Subsided house, called [[The Crooked House]], the result of 19th-century mining subsidence in [[Staffordshire, England]]]] [[File:SubsidedRoad.jpg|thumb|[[Mam Tor]] road destroyed by subsidence and [[shear stress|shear]], near [[Castleton, Derbyshire|Castleton]], [[Derbyshire]]]] '''Subsidence''' is a general term for downward vertical movement of the Earth's surface, which can be caused by both natural processes and human activities. Subsidence involves little or no horizontal movement,<ref name=Jackson1997>{{cite book |editor1-last=Jackson |editor1-first=Julia A. |title=Glossary of geology. |date=1997 |publisher=American Geological Institute |location=Alexandria, Virginia |isbn=0922152349 |edition=Fourth |chapter=subsidence}}</ref><ref name=Allaby2013>{{cite book |last1=Allaby |first1=Michael |title=A dictionary of geology and earth sciences |date=2013 |publisher=Oxford University Press |location=Oxford |isbn=9780199653065 |edition=Fourth |chapter=subsidence}}</ref> which distinguishes it from [[slope movement]].<ref>{{cite journal |last1=Fleming |first1=Robert W. |last2=Varnes |first2=David J. |title=Slope movements |journal=The Heritage of Engineering Geology; the First Hundred Years |date=1991 |pages=201–218 |doi=10.1130/DNAG-CENT-v3.201|isbn=0813753031 }}</ref> Processes that lead to subsidence include [[Dissolution (chemistry)|dissolution]] of underlying [[carbonate rock]] by [[groundwater]]; gradual [[Compaction (geology)|compaction]] of [[sediments]]; withdrawal of fluid [[lava]] from beneath a solidified crust of rock; mining; pumping of subsurface fluids, such as groundwater or [[petroleum]]; or warping of the [[Earth's crust]] by tectonic forces. Subsidence resulting from tectonic deformation of the crust is known as [[tectonic subsidence]]<ref name=Jackson1997/> and can create [[accommodation (geology)|accommodation]] for sediments to accumulate and eventually [[lithification|lithify]] into [[sedimentary rock]].<ref name=Allaby2013/> Ground subsidence is of global concern to [[geologist]]s, [[geotechnical engineering|geotechnical engineers]], [[surveying|surveyors]], [[engineers]], [[urban planners]], landowners, and the public in general.<ref name=" NationalResearchCouncil1991a">National Research Council, 1991. ''Mitigating losses from land subsidence in the United States.'' National Academies Press. 58 p.</ref> Pumping of groundwater or petroleum has led to subsidence of as much as {{convert|9|m||sp=us}} in many locations around the world and incurring costs measured in hundreds of millions of US dollars.<ref name="Monroe1992">{{cite book |last1=Monroe |first1=James S. |title=Physical geology : exploring the Earth |date=1992 |publisher=West Pub. Co |location=St. Paul |isbn=0314921958 |pages=502–503}}</ref> Land subsidence caused by groundwater withdrawal will likely increase in occurrence and related damages, primarily due to global population and economic growth, which will continue to drive higher groundwater demand.<ref>{{Cite journal |last1=Herrera-García |first1=Gerardo |last2=Ezquerro |first2=Pablo |last3=Tomás |first3=Roberto |last4=Béjar-Pizarro |first4=Marta |last5=López-Vinielles |first5=Juan |last6=Rossi |first6=Mauro |last7=Mateos |first7=Rosa M. |last8=Carreón-Freyre |first8=Dora |last9=Lambert |first9=John |last10=Teatini |first10=Pietro |last11=Cabral-Cano |first11=Enrique |last12=Erkens |first12=Gilles |last13=Galloway |first13=Devin |last14=Hung |first14=Wei-Chia |last15=Kakar |first15=Najeebullah |date=January 2021 |title=Mapping the global threat of land subsidence |url=https://www.science.org/doi/10.1126/science.abb8549 |journal=Science |language=en |volume=371 |issue=6524 |pages=34–36 |doi=10.1126/science.abb8549 |pmid=33384368 |bibcode=2021Sci...371...34H |hdl=10045/111711 |issn=0036-8075|hdl-access=free }}</ref> == Causes == ===Groundwater-related subsidence=== [[File:Gwsanjoaquin.jpg|thumb|right|upright|[[San Joaquin Valley]] subsidence]] {{Main|Groundwater-related subsidence}} Groundwater-related subsidence is the sinking of land resulting from groundwater extraction. It is a growing problem in the developing world as cities increase in population and water use, without adequate pumping regulation and enforcement. One estimate has 80% of serious land subsidence problems associated with the excessive extraction of groundwater,<ref>[http://water.usgs.gov/ogw/pubs/fs00165/ USGS Fact Sheet-165-00 December 2000]</ref> making it a growing problem throughout the world.<ref>{{Cite journal |last1=Herrera-García |first1=Gerardo |last2=Ezquerro |first2=Pablo |last3=Tomás |first3=Roberto |last4=Béjar-Pizarro |first4=Marta |last5=López-Vinielles |first5=Juan |last6=Rossi |first6=Mauro |last7=Mateos |first7=Rosa M. |last8=Carreón-Freyre |first8=Dora |last9=Lambert |first9=John |last10=Teatini |first10=Pietro |last11=Cabral-Cano |first11=Enrique |last12=Erkens |first12=Gilles |last13=Galloway |first13=Devin |last14=Hung |first14=Wei-Chia |last15=Kakar |first15=Najeebullah |date=January 2021 |title=Mapping the global threat of land subsidence |url=https://www.science.org/doi/10.1126/science.abb8549 |journal=Science |language=en |volume=371 |issue=6524 |pages=34–36 |doi=10.1126/science.abb8549 |pmid=33384368 |bibcode=2021Sci...371...34H |hdl=10045/111711 |issn=0036-8075|hdl-access=free }}</ref> Groundwater fluctuations can also indirectly affect the decay of organic material. The habitation of [[lowland]]s, such as [[coast]]al or [[river delta|delta]] plains, requires [[drainage]]. The resulting aeration of the [[soil]] leads to the oxidation of its organic components, such as [[peat]], and this decomposition process may cause significant land subsidence. This applies especially when groundwater levels are periodically adapted to subsidence, in order to maintain desired [[unsaturated zone]] depths, exposing more and more peat to oxygen. In addition to this, drained soils [[consolidation (soil)|consolidate]] as a result of increased [[effective stress]].<ref name=":0">Tomás, R.; Márquez, Y.; Lopez-Sanchez, J.M.; Delgado, J.; Blanco, P.; Mallorquí, J.J.; Martínez, M.; Herrera, M.; Mulas, J. Mapping ground subsidence induced by aquifer [[overexploitation]] using advanced Differential SAR interferometry: Vega Media of the Segura river (SE Spain) case study. Remote Sensing of Environment, 98, 269-283, 2005</ref><ref>R. Tomás, G. Herrera, J.M. Lopez-Sanchez, F. Vicente, A. Cuenca, J.J. Mallorquí. Study of the land subsidence in the Orihuela city (SE Spain) using PSI data: distribution, evolution, and correlation with conditioning and triggering factors. Engineering Geology, 115, 105-121, 2010.</ref> In this way, land subsidence has the potential of becoming self-perpetuating, having rates up to 5 cm/yr. [[Water management]] used to be tuned primarily to factors such as [[crop]] optimization but, to varying extents, avoiding subsidence has come to be taken into account as well. ===Dissolution of limestone=== Subsidence causes major problems in [[karst]] terrains, where dissolution of [[limestone]] by fluid flow in the subsurface creates voids (i.e., [[cave]]s). If the roof of a void becomes too weak, it can collapse and the overlying rock and earth will fall into the space, causing subsidence at the surface. This type of subsidence can cause [[sinkhole]]s which can be many hundreds of meters deep.<ref>{{cite book |last1=Waltham |first1=T. |last2=Bell |first2=F.G. |last3=Culshaw |first3=M.G. |title=Sinkholes and Subsidence |series=Karst and Cavernous Rocks in Engineering and Const |date=2005 |doi=10.1007/b138363|isbn=978-3-540-20725-2 }}</ref> ===Mining=== Several types of [[sub-surface mining]], and specifically methods which intentionally cause the extracted void to collapse (such as pillar extraction, [[longwall mining]] and any [[Underground mining (hard rock)|metalliferous mining]] method which uses "caving" such as "block caving" or "sub-level caving") will result in surface subsidence. Mining-induced subsidence is relatively predictable in its magnitude, manifestation and extent, except where a sudden pillar or near-surface tunnel collapse occurs (usually very old workings<ref>Herrera, G.; Tomás, R.; López-Sánchez, J.M.; Delgado, J.; Mallorquí, J.; Duque, S.; Mulas, J. Advanced DInSAR analysis on mining areas: La Union case study (Murcia, SE Spain). Engineering Geology, 90, 148-159, 2007.</ref>). Mining-induced subsidence is nearly always very localized to the surface above the mined area, plus a margin around the outside.<ref>{{cite web |url=http://www.minesub.nsw.gov.au/SiteFiles/minesubnswgovau/Graduated_Guideline_Residential_Construction.pdf |title=Graduated Guidelines for Residential Construction (New South Wales) Volume 1 |access-date=2012-11-19}}</ref> The vertical magnitude of the subsidence itself typically does not cause problems, except in the case of drainage (including natural drainage)–rather, it is the associated surface compressive and tensile strains, curvature, tilts and horizontal displacement that are the cause of the worst damage to the natural environment, buildings and infrastructure.<ref>G. Herrera, M.I. Álvarez Fernández, R. Tomás, C. González-Nicieza, J. M. Lopez-Sanchez, A.E. Álvarez Vigil. Forensic analysis of buildings affected by mining subsidence based on Differential Interferometry (Part III). Engineering Failure Analysis 24, 67-76, 2012.</ref> Where mining activity is planned, mining-induced subsidence can be successfully managed if there is co-operation from all of the stakeholders. This is accomplished through a combination of careful mine planning, the taking of preventive measures, and the carrying out of repairs post-mining.<ref>{{cite journal |last1=Bauer |first1=R.A. |year=2008 |title=Planned coal mine subsidence in Illinois: a public information booklet |journal=Illinois State Geological Survey Circular |volume=573 |url=https://www.ideals.illinois.edu/bitstream/handle/2142/73425/c573.pdf?sequence=2 |access-date=10 December 2021}}</ref> [[File:Abandoned coal mine subsidence stablization project.jpg|thumb|Stabilizing damaged homes above underground mine in Bradenville PA USA]] [[File:Wiki Image Rev1.svg|thumb|upright=1.75|right|Types of ground subsidence]] ===Extraction of petroleum and natural gas=== If [[natural gas]] is extracted from a [[natural gas field]] the initial pressure (up to 60 [[Megapascal|MPa]] (600 [[bar (unit)|bar]])) in the field will drop over the years. The pressure helps support the soil layers above the field. If the gas is extracted, the [[overburden pressure]] sediment compacts and may lead to [[earthquake]]s and subsidence at the ground level. Since exploitation of the [[Slochteren]] ([[Netherlands]]) gas field started in the late 1960s the ground level over a 250 km<sup>2</sup> area has dropped by a current maximum of 30 cm.<ref>[http://www.uwsp.edu/geo/faculty/ozsvath/lectures/Deep%20Subsidence.htm Subsidence lecture] {{Webarchive|url=https://web.archive.org/web/20041030032703/http://www.uwsp.edu/geo/faculty/ozsvath/lectures/Deep%20Subsidence.htm |date=2004-10-30 }}</ref> Extraction of [[petroleum]] likewise can cause significant subsidence. The city of [[Long Beach, California]], has experienced {{convert|9|m||sp=us}} over the course of 34 years of petroleum extraction, resulting in damage of over $100 million to infrastructure in the area. The subsidence was brought to a halt when [[secondary recovery]] wells pumped enough water into the oil reservoir to stabilize it.<ref name="Monroe1992"/> === Earthquake === Land subsidence can occur in various ways during an earthquake. Large areas of land can subside drastically during an earthquake because of offset along fault lines. Land subsidence can also occur as a result of settling and compacting of unconsolidated sediment from the shaking of an earthquake.<ref>{{cite web |url=http://www.geology.ar.gov/geohazards/landsub_eq_induced.htm |title=Earthquake Induced Land Subsidence |access-date=2018-06-25}}</ref> The [[Geospatial Information Authority of Japan]] reported immediate subsidence caused by the [[2011 Tōhoku earthquake and tsunami|2011 Tōhoku earthquake]].<ref>{{cite web|url=http://www.gsi.go.jp/sokuchikijun/sokuchikijun40003.html|script-title=ja:平成23年(2011年)東北地方太平洋沖地震に伴う地盤沈下調査|date=2011-04-14|publisher=Geospatial Information Authority of Japan|language=ja|trans-title=Land subsidence caused by 2011 Tōhoku earthquake and tsunami|access-date=2011-04-17}}</ref> In Northern Japan, subsidence of 0.50 m (1.64 ft) was observed on the coast of the [[Pacific Ocean]] in [[Miyako, Iwate|Miyako]], [[Tōhoku region|Tōhoku]], while [[Rikuzentakata, Iwate]] measured 0.84 m (2.75 ft). In the south at [[Sōma, Fukushima]], 0.29 m (0.95 ft) was observed. The maximum amount of subsidence was 1.2 m (3.93 ft), coupled with horizontal [[diastrophism]] of up to 5.3 m (17.3 ft) on the [[Oshika Peninsula]] in [[Miyagi Prefecture]].<ref>Report date on 19 March 2011, [http://www.gsi.go.jp/chibankansi/chikakukansi_tohoku2.html] Diastrophism in [[Oshika Peninsula]] on [[2011 Tōhoku earthquake and tsunami]], [http://www.gsi.go.jp/common/000059674.pdf Diastrophism in vertical 2011-03-11 M9.0], [http://www.gsi.go.jp/common/000059672.pdf Diastrophism in horizontal 2011-03-11 M9.0] [[Geospatial Information Authority of Japan]]</ref> ===Faulting induced=== When differential stresses exist in the Earth, these can be accommodated either by [[Fault (geology)|geological faulting]] in the brittle [[Crust (geology)|crust]], or by [[ductile]] flow in the hotter and more fluid [[Mantle (geology)|mantle]]. Where faults occur, absolute subsidence may occur in the hanging wall of normal faults. In reverse, or thrust, faults, relative subsidence may be measured in the footwall.<ref>Lee, E.Y., Novotny, J., Wagreich, M. (2019) Subsidence analysis and visualization: for sedimentary basin analysis and modelling, Springer. {{doi|10.1007/978-3-319-76424-5}}</ref> ===Isostatic subsidence=== The crust floats buoyantly in the [[asthenosphere]], with a ratio of mass below the "surface" in proportion to its own density and the density of the asthenosphere. If mass is added to a local area of the crust (e.g., through [[Deposition (sediment)|deposition]]), the crust subsides to compensate and maintain [[isostasy|isostatic balance]].<ref name=Allaby2013/> The opposite of isostatic subsidence is known as [[isostatic rebound]]—the action of the crust returning (sometimes over periods of thousands of years) to a state of isostacy, such as after the melting of large ice sheets or the drying-up of large lakes after the last ice age. Lake Bonneville is a famous example of isostatic rebound. Due to the weight of the water once held in the lake, the earth's crust subsided nearly {{convert|200|ft|m}} to maintain equilibrium. When the lake dried up, the crust rebounded. Today at [[Lake Bonneville]], the center of the former lake is about {{convert|200|ft|m}} higher than the former lake edges.<ref>{{cite journal |last1=Adams |first1=K.D. |last2=Bills |first2=B.G. |title=Isostatic Rebound and Palinspastic Restoration of the Bonneville and Provo Shorelines in the Bonneville Basin, UT, NV, and ID |journal=Developments in Earth Surface Processes |date=2016 |volume=20 |pages=145–164 |doi=10.1016/B978-0-444-63590-7.00008-1|isbn=9780444635907 }}</ref> ===Seasonal effects=== {{See also|Expansive clay}} Many soils contain significant proportions of clay. Because of the very small particle size, they are affected by changes in soil moisture content. Seasonal drying of the soil results in a lowering of both the volume and the surface of the soil. If building foundations are above the level reached by seasonal drying, they move, possibly resulting in damage to the building in the form of tapering cracks. Trees and other vegetation can have a significant local effect on seasonal drying of soils. Over a number of years, a cumulative drying occurs as the tree grows. That can lead to the opposite of subsidence, known as heave or swelling of the soil, when the tree declines or is felled. As the cumulative moisture deficit is reversed, which can last up to 25 years, the surface level around the tree will rise and expand laterally. That often damages buildings unless the foundations have been strengthened or designed to cope with the effect.<ref>{{cite journal |last1=Page |first1=R.C.J. |title=Reducing the cost of subsidence damage despite global warming |journal=Structural Survey |date=June 1998 |volume=16 |issue=2 |pages=67–75 |doi=10.1108/02630809810219641}}</ref> === Weight of buildings === High buildings can create land subsidence by pressing the soil beneath with their weight. The problem is already felt in [[New York City]], [[San Francisco Bay Area]], [[Lagos]].<ref>{{cite web |last1=Yirka |first1=Bob |title=New York City building weight contributing to subsidence drop of 1–2 millimeters per year |url=https://phys.org/news/2023-05-york-city-weight-contributing-subsidence.html |website=Phys.org |publisher=Earth's Future |access-date=22 January 2024}}</ref><ref>{{cite web |last1=Novo |first1=Cristina |title=The weight of buildings contributes to the sinking of cities |url=https://smartwatermagazine.com/news/smart-water-magazine/weight-buildings-contributes-sinking-cities |website=Smart Water Magazine |date=2 March 2021 |access-date=22 January 2024}}</ref> == Impacts == === Increase of flooding potential === Land subsidence leads to the lowering of the ground surface, altering the topography. This elevation reduction increases the risk of [[flooding]], particularly in river flood plains<ref>{{Cite journal |last1=Navarro-Hernández |first1=María I. |last2=Valdes-Abellan |first2=Javier |last3=Tomás |first3=Roberto |last4=Tessitore |first4=Serena |last5=Ezquerro |first5=Pablo |last6=Herrera |first6=Gerardo |date=2023-09-01 |title=Analysing the Impact of Land Subsidence on the Flooding Risk: Evaluation Through InSAR and Modelling |journal=Water Resources Management |language=en |volume=37 |issue=11 |pages=4363–4383 |doi=10.1007/s11269-023-03561-6 |bibcode=2023WatRM..37.4363N |issn=1573-1650|doi-access=free |hdl=10045/136774 |hdl-access=free }}</ref> and delta areas.<ref>{{Cite journal |last1=Avornyo |first1=Selasi Yao |last2=Minderhoud |first2=Philip S. J. |last3=Teatini |first3=Pietro |last4=Seeger |first4=Katharina |last5=Hauser |first5=Leon T. |last6=Woillez |first6=Marie-Noëlle |last7=Jayson-Quashigah |first7=Philip-Neri |last8=Mahu |first8=Edem |last9=Kwame-Biney |first9=Michael |last10=Appeaning Addo |first10=Kwasi |date=2024-06-01 |title=The contribution of coastal land subsidence to potential sea-level rise impact in data-sparse settings: The case of Ghana's Volta delta |journal=Quaternary Science Advances |volume=14 |pages=100175 |doi=10.1016/j.qsa.2024.100175 |bibcode=2024QSAdv..1400175A |issn=2666-0334|doi-access=free }}</ref> ==== Sinking cities ==== {{Excerpt|Sinking cities}} ===Earth fissures=== [[Earth fissure|Earth fissures]] are linear fractures that appear on the land surface, characterized by openings or offsets. These fissures can be several meters deep, several meters wide, and extend for several kilometers. They form when the deformation of an aquifer, caused by pumping, concentrates stress in the sediment.<ref>{{Cite journal |last=Burbey |first=Thomas |date=2002-10-01 |title=The influence of faults in basin-fill deposits on land subsidence, Las Vegas Valley, Nevada, USA |url=http://link.springer.com/10.1007/s10040-002-0215-7 |journal=Hydrogeology Journal |volume=10 |issue=5 |pages=525–538 |doi=10.1007/s10040-002-0215-7 |bibcode=2002HydJ...10..525B |issn=1431-2174|url-access=subscription }}</ref> This inhomogeneous deformation results in the differential compaction of the sediments. Ground fissures develop when this tensile stress exceeds the tensile strength of the sediment. ===Infrastructure damage=== Land subsidence can lead to differential [[Settlement (structural)|settlements]] in [[Building|buildings]] and other [[Infrastructure|infrastructures]], causing angular distortions. When these angular distortions exceed certain values, the structures can become damaged, resulting in issues such as tilting or cracking.<ref>{{Cite journal |last1=Bru |first1=G. |last2=Herrera |first2=G. |last3=Tomás |first3=R. |last4=Duro |first4=J. |last5=De la Vega |first5=R. |last6=Mulas |first6=J. |date=2010-09-22 |title=Control of deformation of buildings affected by subsidence using persistent scatterer interferometry |url=http://www.tandfonline.com/doi/abs/10.1080/15732479.2010.519710 |journal=Structure and Infrastructure Engineering |language=en |pages=1–13 |doi=10.1080/15732479.2010.519710 |issn=1573-2479|url-access=subscription }}</ref><ref>{{Cite journal |last1=Tomás |first1=Roberto |last2=García-Barba |first2=Javier |last3=Cano |first3=Miguel |last4=Sanabria |first4=Margarita P |last5=Ivorra |first5=Salvador |last6=Duro |first6=Javier |last7=Herrera |first7=Gerardo |date=November 2012 |title=Subsidence damage assessment of a Gothic church using differential interferometry and field data |url=http://journals.sagepub.com/doi/10.1177/1475921712451953 |journal=Structural Health Monitoring |language=en |volume=11 |issue=6 |pages=751–762 |doi=10.1177/1475921712451953 |hdl=10045/55037 |issn=1475-9217|hdl-access=free }}</ref><ref>{{Cite journal |last1=Sanabria |first1=M. P. |last2=Guardiola-Albert |first2=C. |last3=Tomás |first3=R. |last4=Herrera |first4=G. |last5=Prieto |first5=A. |last6=Sánchez |first6=H. |last7=Tessitore |first7=S. |date=2014-05-27 |title=Subsidence activity maps derived from DInSAR data: Orihuela case study |url=https://nhess.copernicus.org/articles/14/1341/2014/ |journal=Natural Hazards and Earth System Sciences |language=English |volume=14 |issue=5 |pages=1341–1360 |doi=10.5194/nhess-14-1341-2014 |doi-access=free |bibcode=2014NHESS..14.1341S |issn=1561-8633|hdl=10045/46369 |hdl-access=free }}</ref> == Field measurement == Land subsidence causes vertical displacements (subsidence or uplift). Although horizontal displacements also occur, they are generally less significant. The following are field methods used to measure vertical and horizontal displacements in subsiding areas: * [[Surveying]].<ref name=":1" /><ref>{{Cite journal |last1=Abidin |first1=Hasanuddin Z. |last2=Andreas |first2=H. |last3=Gamal |first3=M. |last4=Djaja |first4=Rochman |last5=Subarya |first5=C. |last6=Hirose |first6=K. |last7=Maruyama |first7=Y. |last8=Murdohardono |first8=D. |last9=Rajiyowiryono |first9=H. |date=2005 |editor-last=Sansò |editor-first=Fernando |title=Monitoring Land Subsidence of Jakarta (Indonesia) Using Leveling, GPS Survey and InSAR Techniques |url=https://link.springer.com/chapter/10.1007/3-540-27432-4_95 |journal=A Window on the Future of Geodesy |series=International Association of Geodesy Symposia |volume=128 |language=en |location=Berlin, Heidelberg |publisher=Springer |pages=561–566 |doi=10.1007/3-540-27432-4_95 |isbn=978-3-540-27432-2|url-access=subscription }}</ref><ref name=":2">{{Cite journal |last1=Fergason |first1=K. C. |last2=Rucker |first2=M. L. |last3=Panda |first3=B. B. |date=2015-11-12 |title=Methods for monitoring land subsidence and earth fissures in the Western USA |url=https://piahs.copernicus.org/articles/372/361/2015/ |journal=Proceedings of the International Association of Hydrological Sciences |language=en |volume=372 |pages=361–366 |doi=10.5194/piahs-372-361-2015 |doi-access=free |bibcode=2015PIAHS.372..361F |issn=2199-899X}}</ref> * Borehole [[extensometer]]s.<ref name=":1" /><ref>{{Cite journal |last1=Pardo |first1=Juan Manuel |last2=Lozano |first2=Antonio |last3=Herrera |first3=Gerardo |last4=Mulas |first4=Joaquín |last5=Rodríguez |first5=Ángel |date=2013-11-01 |title=Instrumental monitoring of the subsidence due to groundwater withdrawal in the city of Murcia (Spain) |url=https://doi.org/10.1007/s12665-013-2710-7 |journal=Environmental Earth Sciences |language=en |volume=70 |issue=5 |pages=1957–1963 |doi=10.1007/s12665-013-2710-7 |bibcode=2013EES....70.1957P |issn=1866-6299|url-access=subscription }}</ref><ref name=":2" /> * [[Global Navigation Satellite System]] (GNSS)<ref>{{Cite journal |last1=Susilo |first1=Susilo |last2=Salman |first2=Rino |last3=Hermawan |first3=Wawan |last4=Widyaningrum |first4=Risna |last5=Wibowo |first5=Sidik Tri |last6=Lumban-Gaol |first6=Yustisi Ardhitasari |last7=Meilano |first7=Irwan |last8=Yun |first8=Sang-Ho |date=2023-07-01 |title=GNSS land subsidence observations along the northern coastline of Java, Indonesia |journal=Scientific Data |language=en |volume=10 |issue=1 |pages=421 |doi=10.1038/s41597-023-02274-0 |pmid=37393372 |bibcode=2023NatSD..10..421S |issn=2052-4463|pmc=10314896 }}</ref><ref>{{Cite journal |last1=Hu |first1=Bo |last2=Chen |first2=Junyu |last3=Zhang |first3=Xingfu |date=January 2019 |title=Monitoring the Land Subsidence Area in a Coastal Urban Area with InSAR and GNSS |journal=Sensors |language=en |volume=19 |issue=14 |pages=3181 |doi=10.3390/s19143181 |doi-access=free |issn=1424-8220 |pmc=6679266 |pmid=31330996|bibcode=2019Senso..19.3181H }}</ref><ref>{{Cite journal |last=Ikehara |first=Marti E. |date=October 1994 |title=Global Positioning System surveying to monitor land subsidence in Sacramento Valley, California, USA |url=http://www.tandfonline.com/doi/abs/10.1080/02626669409492765 |journal=Hydrological Sciences Journal |language=en |volume=39 |issue=5 |pages=417–429 |doi=10.1080/02626669409492765 |bibcode=1994HydSJ..39..417I |issn=0262-6667|url-access=subscription }}</ref><ref name=":2" /> * [[Interferometric synthetic-aperture radar|Interferometric Synthetic Apertura Radar]] (InSAR)<ref name=":3" /><ref name=":0" /><ref name=":2" /> * [[LiDAR]]<ref name=":4" /> * [[Tiltmeter]]s.<ref>{{Cite book |last1=Davis |first1=E. |last2=Wright |first2=C. |last3=Demetrius |first3=S. |last4=Choi |first4=J. |last5=Craley |first5=G. |title=All Days |date=2000-06-19 |chapter=Precise Tiltmeter Subsidence Monitoring Enhances Reservoir Management |chapter-url=https://dx.doi.org/10.2118/62577-MS |language=en |publisher=OnePetro |doi=10.2118/62577-MS}}</ref><ref>{{Cite journal |last1=Andreas |first1=Heri |last2=Abidin |first2=Hasanuddin Zainal |last3=Sarsito |first3=Dina Anggreni |last4=Pradipta |first4=Dhota |date=2019 |title=The investigation on high-rise building tilting from the issue of land subsidence in Jakarta City |url=https://www.matec-conferences.org/articles/matecconf/abs/2019/19/matecconf_concern2018_06002/matecconf_concern2018_06002.html |journal=MATEC Web of Conferences |language=en |volume=270 |pages=06002 |doi=10.1051/matecconf/201927006002 |issn=2261-236X}}</ref><ref name=":2" /> Tomás et al.<ref name=":5">{{Cite journal |last1=Tomás |first1=R. |last2=Romero |first2=R. |last3=Mulas |first3=J. |last4=Marturià |first4=J. J. |last5=Mallorquí |first5=J. J. |last6=Lopez-Sanchez |first6=J. M. |last7=Herrera |first7=G. |last8=Gutiérrez |first8=F. |last9=González |first9=P. J. |last10=Fernández |first10=J. |last11=Duque |first11=S. |last12=Concha-Dimas |first12=A. |last13=Cocksley |first13=G. |last14=Castañeda |first14=C. |last15=Carrasco |first15=D. |date=2014-01-01 |title=Radar interferometry techniques for the study of ground subsidence phenomena: a review of practical issues through cases in Spain |url=https://doi.org/10.1007/s12665-013-2422-z |journal=Environmental Earth Sciences |language=en |volume=71 |issue=1 |pages=163–181 |doi=10.1007/s12665-013-2422-z |bibcode=2014EES....71..163T |issn=1866-6299|hdl=10261/82968 |hdl-access=free }}</ref> conducted a comparative analysis of various land subsidence monitoring techniques. The results indicated that InSAR offered the highest coverage, lowest annual cost per point of information and the highest point density. Additionally, they found that, aside from continuous acquisition systems typically installed in areas with rapid subsidence, InSAR had the highest measurement frequencies. In contrast, leveling, non-permanent GNSS, and non-permanent extensometers generally provided only one or two measurements per year.<ref name=":5" /> == Prediction == ; Empirical Methods : These methods project future land subsidence trends by extrapolating from existing data, treating subsidence as a function solely of time.<ref name=":1" /> The extrapolation can be performed either visually or by fitting appropriate curves. Common functions used for fitting include linear, bilinear, quadratic, and/or exponential models. For example, this method has been successfully applied for predicting mining-induced subsidence.<ref>{{Cite journal |last1=Alam |first1=A. K. M. Badrul |last2=Fujii |first2=Yoshiaki |last3=Eidee |first3=Shaolin Jahan |last4=Boeut |first4=Sophea |last5=Rahim |first5=Afikah Binti |date=2022-08-30 |title=Prediction of mining-induced subsidence at Barapukuria longwall coal mine, Bangladesh |journal=Scientific Reports |language=en |volume=12 |issue=1 |pages=14800 |doi=10.1038/s41598-022-19160-1 |pmid=36042276 |pmc=9427737 |bibcode=2022NatSR..1214800A |issn=2045-2322}}</ref> ; Semi-empirical or statistical methods : These approaches evaluate land subsidence based on its relationship with one or more influencing factors,<ref name=":1" /><ref name=":6">{{Cite journal |last1=Xu |first1=Y. S. |last2=Shen |first2=S. L. |last3=Bai |first3=Y. |date=2006-05-15 |title=State-of-the-Art of Land Subsidence Prediction due to Groundwater Withdrawal in China |url=http://dx.doi.org/10.1061/40867(199)5 |journal=Underground Construction and Ground Movement |location=Reston, VA |publisher=American Society of Civil Engineers |pages=58–65 |doi=10.1061/40867(199)5|isbn=978-0-7844-0867-4 |url-access=subscription }}</ref> such as changes in [[groundwater]] levels, the volume of [[groundwater extraction]], and clay content. ; Theoretical methods :* 1D model: This model assumes that changes in piezometric levels affecting [[aquifer]]s and [[aquitard]]s occur only in the vertical direction.<ref name=":6" /> It allows for subsidence calculations at a specific point using only vertical soil parameters.<ref>{{Cite journal |last1=Lees |first1=Matthew |last2=Knight |first2=Rosemary |last3=Smith |first3=Ryan |date=June 2022 |title=Development and Application of a 1D Compaction Model to Understand 65 Years of Subsidence in the San Joaquin Valley |journal=Water Resources Research |language=en |volume=58 |issue=6 |doi=10.1029/2021WR031390 |bibcode=2022WRR....5831390L |issn=0043-1397|doi-access=free }}</ref><ref>{{Cite journal |last1=Tomás |first1=R. |last2=Herrera |first2=G. |last3=Delgado |first3=J. |last4=Lopez-Sanchez |first4=J. M. |last5=Mallorquí |first5=J. J. |last6=Mulas |first6=J. |date=2010-02-26 |title=A ground subsidence study based on DInSAR data: Calibration of soil parameters and subsidence prediction in Murcia City (Spain) |url=https://linkinghub.elsevier.com/retrieve/pii/S0013795209002944 |journal=Engineering Geology |volume=111 |issue=1 |pages=19–30 |doi=10.1016/j.enggeo.2009.11.004 |bibcode=2010EngGe.111...19T |issn=0013-7952|url-access=subscription }}</ref> :* Quasi-3D Model: Quasi-three-dimensional seepage models apply [[Terzaghi's principle|Terzaghi]]'s one-dimensional consolidation equation to estimate subsidence, integrating some aspects of three-dimensional effects.<ref name=":6" /><ref>{{Cite journal |last1=Zhu |first1=Yan |last2=Shi |first2=Liangsheng |last3=Wu |first3=Jingwei |last4=Ye |first4=Ming |last5=Cui |first5=Lihong |last6=Yang |first6=Jinzhong |date=2016-05-12 |title=Regional Quasi-Three-Dimensional Unsaturated-Saturated Water Flow Model Based on a Vertical-Horizontal Splitting Concept |journal=Water |language=en |volume=8 |issue=5 |pages=195 |doi=10.3390/w8050195 |doi-access=free |issn=2073-4441}}</ref> :* 3D Model: The fully coupled three-dimensional model simulates water flow in three dimensions and calculates subsidence using Biot's three-dimensional consolidation theory.<ref name=":6" /><ref>{{Cite journal |last1=Bonì |first1=Roberta |last2=Meisina |first2=Claudia |last3=Teatini |first3=Pietro |last4=Zucca |first4=Francesco |last5=Zoccarato |first5=Claudia |last6=Franceschini |first6=Andrea |last7=Ezquerro |first7=Pablo |last8=Béjar-Pizarro |first8=Marta |last9=Antonio Fernández-Merodo |first9=José |last10=Guardiola-Albert |first10=Carolina |last11=Luis Pastor |first11=José |last12=Tomás |first12=Roberto |last13=Herrera |first13=Gerardo |date=2020-06-01 |title=3D groundwater flow and deformation modelling of Madrid aquifer |url=https://linkinghub.elsevier.com/retrieve/pii/S002216942030233X |journal=Journal of Hydrology |volume=585 |pages=124773 |doi=10.1016/j.jhydrol.2020.124773 |bibcode=2020JHyd..58524773B |hdl=10045/103419 |issn=0022-1694|hdl-access=free }}</ref><ref>{{Cite journal |last1=Ye |first1=Shujun |last2=Luo |first2=Yue |last3=Wu |first3=Jichun |last4=Yan |first4=Xuexin |last5=Wang |first5=Hanmei |last6=Jiao |first6=Xun |last7=Teatini |first7=Pietro |date=2016-05-01 |title=Three-dimensional numerical modeling of land subsidence in Shanghai, China |url=https://link.springer.com/article/10.1007/s10040-016-1382-2 |journal=Hydrogeology Journal |language=en |volume=24 |issue=3 |pages=695–709 |doi=10.1007/s10040-016-1382-2 |bibcode=2016HydJ...24..695Y |issn=1435-0157|url-access=subscription }}</ref> ; Machine learning : [[Machine learning]] has become a new approach for tackling nonlinear problems. It has emerged as a promising method for simulating and predicting land subsidence.<ref>{{Cite journal |last1=Liu |first1=Jianxin |last2=Liu |first2=Wenxiang |last3=Allechy |first3=Fabrice Blanchard |last4=Zheng |first4=Zhiwen |last5=Liu |first5=Rong |last6=Kouadio |first6=Kouao Laurent |date=2024-02-14 |title=Machine learning-based techniques for land subsidence simulation in an urban area |url=https://linkinghub.elsevier.com/retrieve/pii/S0301479724000641 |journal=Journal of Environmental Management |volume=352 |pages=120078 |doi=10.1016/j.jenvman.2024.120078 |pmid=38232594 |bibcode=2024JEnvM.35220078L |issn=0301-4797|url-access=subscription }}</ref><ref>{{Cite journal |last1=Li |first1=Huijun |last2=Zhu |first2=Lin |last3=Dai |first3=Zhenxue |last4=Gong |first4=Huili |last5=Guo |first5=Tao |last6=Guo |first6=Gaoxuan |last7=Wang |first7=Jingbo |last8=Teatini |first8=Pietro |date=December 2021 |title=Spatiotemporal modeling of land subsidence using a geographically weighted deep learning method based on PS-InSAR |url=http://dx.doi.org/10.1016/j.scitotenv.2021.149244 |journal=Science of the Total Environment |volume=799 |pages=149244 |doi=10.1016/j.scitotenv.2021.149244 |pmid=34365261 |bibcode=2021ScTEn.79949244L |issn=0048-9697|url-access=subscription }}</ref> == Instances worldwide == {| class="wikitable" |+ !Location !Depositional environment !Maximum subsidence rate (mm/year) and period !Cause !Impacts !Remedial or protective measurements !References |- |Bangkok, Thailand |Fluvial and marine deposits from the Holocene |<120 (1981) |Groundwater extraction |Intensification of city flooding, shoreline regression, intrusion of salt water and foundation engineering problems. |Groundwater pricing policies, the expansion of tap water supply from surface sources in underserved industrial suburban areas and strict implementation of the groundwater usage ban |<ref>{{Cite journal |last1=Phien-wej |first1=N. |last2=Giao |first2=P. H. |last3=Nutalaya |first3=P. |date=2006-02-02 |title=Land subsidence in Bangkok, Thailand |url=https://linkinghub.elsevier.com/retrieve/pii/S0013795205002693 |journal=Engineering Geology |volume=82 |issue=4 |pages=187–201 |doi=10.1016/j.enggeo.2005.10.004 |issn=0013-7952|url-access=subscription }}</ref> |- |Beijing, China |Alluvial sediments |>100 (2010-2011) |Groundwater extraction | |The South-to-North Water Diversion Project Central Route (SNWDP-CR) was built to redistribute water resources. |<ref>{{Cite journal |last1=Chen |first1=Mi |last2=Tomás |first2=Roberto |last3=Li |first3=Zhenhong |last4=Motagh |first4=Mahdi |last5=Li |first5=Tao |last6=Hu |first6=Leyin |last7=Gong |first7=Huili |last8=Li |first8=Xiaojuan |last9=Yu |first9=Jun |last10=Gong |first10=Xulong |date=June 2016 |title=Imaging Land Subsidence Induced by Groundwater Extraction in Beijing (China) Using Satellite Radar Interferometry |journal=Remote Sensing |language=en |volume=8 |issue=6 |pages=468 |doi=10.3390/rs8060468 |doi-access=free |bibcode=2016RemS....8..468C |issn=2072-4292}}</ref><ref>{{Cite journal |last1=Hu |first1=Leyin |last2=Dai |first2=Keren |last3=Xing |first3=Chengqi |last4=Li |first4=Zhenhong |last5=Tomás |first5=Roberto |last6=Clark |first6=Beth |last7=Shi |first7=Xianlin |last8=Chen |first8=Mi |last9=Zhang |first9=Rui |last10=Qiu |first10=Qiang |last11=Lu |first11=Yajun |date=2019-10-01 |title=Land subsidence in Beijing and its relationship with geological faults revealed by Sentinel-1 InSAR observations |url=https://www.sciencedirect.com/science/article/pii/S0303243418308821 |journal=International Journal of Applied Earth Observation and Geoinformation |volume=82 |pages=101886 |doi=10.1016/j.jag.2019.05.019 |bibcode=2019IJAEO..8201886H |hdl=10045/93393 |issn=1569-8432|hdl-access=free }}</ref><ref>{{Cite journal |last1=Zhu |first1=Lin |last2=Gong |first2=Huili |last3=Chen |first3=Yun |last4=Wang |first4=Shufang |last5=Ke |first5=Yinhai |last6=Guo |first6=Gaoxuan |last7=Li |first7=Xiaojuan |last8=Chen |first8=Beibei |last9=Wang |first9=Haigang |last10=Teatini |first10=Pietro |date=2020-10-01 |title=Effects of Water Diversion Project on groundwater system and land subsidence in Beijing, China |url=https://www.sciencedirect.com/science/article/pii/S0013795220301745 |journal=Engineering Geology |volume=276 |pages=105763 |doi=10.1016/j.enggeo.2020.105763 |bibcode=2020EngGe.27605763Z |issn=0013-7952|url-access=subscription }}</ref><ref>{{Cite journal |last1=YANG |first1=Cheng-hong |last2=DING |first2=Tao |date=2011-11-20 |title=Study on the Survey Datum Construction for the Middle Route of South-to-North Water Diversion Project |url=http://dx.doi.org/10.3724/sp.j.1201.2011.01026 |journal=South-to-North Water Diversion and Water Science & Technology |volume=9 |issue=1 |pages=26–28 |doi=10.3724/sp.j.1201.2011.01026 |doi-broken-date=1 November 2024 |issn=1672-1683|url-access=subscription }}</ref> |- |Datong coal field, China |Jurassic and Carboniferous coal seams |17 (2003-2010) <1146 (2022-2023) |Groundwater overpumping from mines and coal mining subsidence. |Soil avalanche, landslide, mud-rock flow, surface settlement, earth fissures and surface gangue stack.. | |<ref>{{Cite book |last1=Fu |first1=Peiyi |last2=Ge |first2=Yonghui |last3=Ma |first3=Chao |last4=Jia |first4=Xiuming |last5=Shan |first5=Xinjian |last6=Li |first6=Fangfang |last7=Zhang |first7=Xiaoke |chapter=A Study of Land Subsidence by Radar Remote Sensing at Datong Jurassic & Carboniferous Period Coalfield |date=October 2009 |title=2009 2nd International Congress on Image and Signal Processing |chapter-url=https://doi.org/10.1109/cisp.2009.5304493 |publisher=IEEE |pages=1–4 |doi=10.1109/cisp.2009.5304493|isbn=978-1-4244-4129-7 }}</ref><ref>{{Cite journal |last1=Yang |first1=Cheng-sheng |last2=Zhang |first2=Qin |last3=Zhao |first3=Chao-ying |last4=Wang |first4=Qing-liang |last5=Ji |first5=Ling-yun |date=2014-04-01 |title=Monitoring land subsidence and fault deformation using the small baseline subset InSAR technique: A case study in the Datong Basin, China |url=https://linkinghub.elsevier.com/retrieve/pii/S0264370714000180 |journal=Journal of Geodynamics |volume=75 |pages=34–40 |doi=10.1016/j.jog.2014.02.002 |issn=0264-3707|url-access=subscription }}</ref><ref>{{Cite journal |last1=Hu |first1=Liuru |last2=Tang |first2=Xinming |last3=Tomás |first3=Roberto |last4=Li |first4=Tao |last5=Zhang |first5=Xiang |last6=Li |first6=Zhiwei |last7=Yao |first7=Jiaqi |last8=Lu |first8=Jing |date=2024-07-01 |title=Monitoring surface deformation dynamics in the mining subsidence area using LT-1 InSAR interferometry: A case study of Datong, China |url=https://linkinghub.elsevier.com/retrieve/pii/S1569843224002905 |journal=International Journal of Applied Earth Observation and Geoinformation |volume=131 |pages=103936 |doi=10.1016/j.jag.2024.103936 |issn=1569-8432|hdl=10045/143747 |hdl-access=free }}</ref> |- |Guadalentín, Spain |Alluvial and fluvial sediments |>110 (1992-2012) |Groundwater extraction |Increase of flooding potential | |<ref>{{Cite journal |last1=Bonì |first1=Roberta |last2=Herrera |first2=Gerardo |last3=Meisina |first3=Claudia |last4=Notti |first4=Davide |last5=Béjar-Pizarro |first5=Marta |last6=Zucca |first6=Francesco |last7=González |first7=Pablo J. |last8=Palano |first8=Mimmo |last9=Tomás |first9=Roberto |last10=Fernández |first10=José |last11=Fernández-Merodo |first11=José Antonio |last12=Mulas |first12=Joaquín |last13=Aragón |first13=Ramón |last14=Guardiola-Albert |first14=Carolina |last15=Mora |first15=Oscar |date=2015-11-23 |title=Twenty-year advanced DInSAR analysis of severe land subsidence: The Alto Guadalentín Basin (Spain) case study |url=https://www.sciencedirect.com/science/article/pii/S0013795215300442 |journal=Engineering Geology |volume=198 |pages=40–52 |doi=10.1016/j.enggeo.2015.08.014 |bibcode=2015EngGe.198...40B |hdl=10045/50008 |issn=0013-7952|hdl-access=free }}</ref><ref>{{Cite journal |last1=Navarro-Hernández |first1=María I. |last2=Valdes-Abellan |first2=Javier |last3=Tomás |first3=Roberto |last4=Tessitore |first4=Serena |last5=Ezquerro |first5=Pablo |last6=Herrera |first6=Gerardo |date=2023-09-01 |title=Analysing the Impact of Land Subsidence on the Flooding Risk: Evaluation Through InSAR and Modelling |journal=Water Resources Management |language=en |volume=37 |issue=11 |pages=4363–4383 |doi=10.1007/s11269-023-03561-6 |bibcode=2023WatRM..37.4363N |issn=1573-1650|doi-access=free |hdl=10045/136774 |hdl-access=free }}</ref><ref name=":4">{{Cite journal |last1=Hu |first1=Liuru |last2=Navarro-Hernández |first2=María I. |last3=Liu |first3=Xiaojie |last4=Tomás |first4=Roberto |last5=Tang |first5=Xinming |last6=Bru |first6=Guadalupe |last7=Ezquerro |first7=Pablo |last8=Zhang |first8=Qingtao |date=2022-10-01 |title=Analysis of regional large-gradient land subsidence in the Alto Guadalentín Basin (Spain) using open-access aerial LiDAR datasets |url=https://www.sciencedirect.com/science/article/pii/S003442572200325X |journal=Remote Sensing of Environment |volume=280 |pages=113218 |doi=10.1016/j.rse.2022.113218 |bibcode=2022RSEnv.28013218H |issn=0034-4257|hdl=10045/126163 |hdl-access=free }}</ref> |- |Gediz River Basin, Türkiye |Graben filled with approximately 500 m of Pliocene and Quaternary alluvial material. |64.0 (2017-2021) |Groundwater extraction and tectonics |Several earth fissures and damage on buildings | |<ref>{{Cite journal |last1=Navarro-Hernández |first1=María I. |last2=Tomás |first2=Roberto |last3=Valdes-Abellan |first3=Javier |last4=Bru |first4=Guadalupe |last5=Ezquerro |first5=Pablo |last6=Guardiola-Albert |first6=Carolina |last7=Elçi |first7=Alper |last8=Batkan |first8=Elif Aysu |last9=Caylak |first9=Baris |last10=Ören |first10=Ali Hakan |last11=Meisina |first11=Claudia |last12=Pedretti |first12=Laura |last13=Rygus |first13=Michelle |date=2023-12-20 |title=Monitoring land subsidence induced by tectonic activity and groundwater extraction in the eastern Gediz River Basin (Türkiye) using Sentinel-1 observations |url=https://linkinghub.elsevier.com/retrieve/pii/S0013795223003617 |journal=Engineering Geology |volume=327 |pages=107343 |doi=10.1016/j.enggeo.2023.107343 |bibcode=2023EngGe.32707343N |issn=0013-7952|hdl=10045/138185 |hdl-access=free }}</ref> |- |Jakarta, Indonesia |Alluvial sediments |260 (1991-1997) 100 (1997-2002) |Groundwater extraction |Cracking of permanent structures, expanded flooding areas, lowered groundwater levels, and increased inland seawater intrusion. | |<ref>{{Cite journal |last1=Abidin |first1=Hasanuddin Z. |last2=Andreas |first2=H. |last3=Gamal |first3=M. |last4=Djaja |first4=Rochman |last5=Subarya |first5=C. |last6=Hirose |first6=K. |last7=Maruyama |first7=Y. |last8=Murdohardono |first8=D. |last9=Rajiyowiryono |first9=H. |date=2005 |editor-last=Sansò |editor-first=Fernando |title=Monitoring Land Subsidence of Jakarta (Indonesia) Using Leveling, GPS Survey and InSAR Techniques |url=https://link.springer.com/chapter/10.1007/3-540-27432-4_95 |journal=A Window on the Future of Geodesy |series=International Association of Geodesy Symposia |volume=128 |language=en |location=Berlin, Heidelberg |publisher=Springer |pages=561–566 |doi=10.1007/3-540-27432-4_95 |isbn=978-3-540-27432-2|url-access=subscription }}</ref><ref>{{Cite journal |last1=Widodo |first1=Joko |last2=Herlambang |first2=Arie |last3=Sulaiman |first3=Albertus |last4=Razi |first4=Pakhrur |last5=Yohandri |last6=Perissin |first6=Daniele |last7=Kuze |first7=Hiroaki |last8=Sri Sumantyo |first8=Josaphat Tetuko |date=April 2019 |title=Land subsidence rate analysis of Jakarta Metropolitan Region based on D-InSAR processing of Sentinel data C-Band frequency |journal=Journal of Physics: Conference Series |volume=1185 |issue=1 |pages=012004 |doi=10.1088/1742-6596/1185/1/012004 |bibcode=2019JPhCS1185a2004W |issn=1742-6588|doi-access=free }}</ref><ref>{{Cite journal |last1=Hakim |first1=Wahyu Luqmanul |last2=Achmad |first2=Arief Rizqiyanto |last3=Eom |first3=Jinah |last4=Lee |first4=Chang-Wook |date=2020-12-14 |title=Land Subsidence Measurement of Jakarta Coastal Area Using Time Series Interferometry with Sentinel-1 SAR Data |url=https://bioone.org/journals/journal-of-coastal-research/volume-102/issue-sp1/SI102-010.1/Land-Subsidence-Measurement-of-Jakarta-Coastal-Area-Using-Time-Series/10.2112/SI102-010.1.full |journal=Journal of Coastal Research |volume=102 |issue=sp1 |doi=10.2112/SI102-010.1 |issn=0749-0208|url-access=subscription }}</ref> |- |Karapınar, Turkey |Miocene–Pliocene conglomerate, sandstone, marl, limestone, tuff, and evaporites | |Dissolution | | |<ref>{{Cite journal |last1=Orhan |first1=Osman |last2=Oliver-Cabrera |first2=Talib |last3=Wdowinski |first3=Shimon |last4=Yalvac |first4=Sefa |last5=Yakar |first5=Murat |date=January 2021 |title=Land Subsidence and Its Relations with Sinkhole Activity in Karapınar Region, Turkey: A Multi-Sensor InSAR Time Series Study |journal=Sensors |language=en |volume=21 |issue=3 |pages=774 |doi=10.3390/s21030774 |doi-access=free |issn=1424-8220 |pmc=7865528 |pmid=33498896|bibcode=2021Senso..21..774O }}</ref> |- |La Unión, Spain |Sandstones,conglomerates, phyllites and limestones |7 (2003-2004) |Underground mining activities |Collapse of one building and damage on surrounding buildings |Prohibition of construction in the urban area affected by subsidence. |<ref>{{Cite journal |last1=Herrera |first1=G. |last2=Tomás |first2=R. |last3=Lopez-Sanchez |first3=J.M. |last4=Delgado |first4=J. |last5=Mallorqui |first5=J.J. |last6=Duque |first6=S. |last7=Mulas |first7=J. |date=March 2007 |title=Advanced DInSAR analysis on mining areas: La Union case study (Murcia, SE Spain) |url=https://doi.org/10.1016/j.enggeo.2007.01.001 |journal=Engineering Geology |volume=90 |issue=3–4 |pages=148–159 |doi=10.1016/j.enggeo.2007.01.001 |bibcode=2007EngGe..90..148H |hdl=2117/12906 |issn=0013-7952|hdl-access=free }}</ref><ref>{{Cite journal |last1=Herrera |first1=G. |last2=Álvarez Fernández |first2=M.I. |last3=Tomás |first3=R. |last4=González-Nicieza |first4=C. |last5=López-Sánchez |first5=J.M. |last6=Álvarez Vigil |first6=A.E. |date=September 2012 |title=Forensic analysis of buildings affected by mining subsidence based on Differential Interferometry (Part III) |url=https://doi.org/10.1016/j.engfailanal.2012.03.003 |journal=Engineering Failure Analysis |volume=24 |pages=67–76 |doi=10.1016/j.engfailanal.2012.03.003 |issn=1350-6307|hdl=20.500.12468/749 |hdl-access=free }}</ref> |- |México city, Mexico |Alluvial and lacustrine sediments |387 (2014-2020) |Groundwater extraction |Development of earth fissures. Damage on buildings. | |<ref>{{Cite journal |last1=Ortiz-Zamora |first1=Dalia |last2=Ortega-Guerrero |first2=Adrian |date=January 2010 |title=Evolution of long-term land subsidence near Mexico City: Review, field investigations, and predictive simulations |url=https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2008WR007398 |journal=Water Resources Research |language=en |volume=46 |issue=1 |doi=10.1029/2008WR007398 |bibcode=2010WRR....46.1513O |issn=0043-1397|url-access=subscription }}</ref><ref>{{Cite journal |last1=Cigna |first1=Francesca |last2=Tapete |first2=Deodato |date=2021-02-01 |title=Present-day land subsidence rates, surface faulting hazard and risk in Mexico City with 2014–2020 Sentinel-1 IW InSAR |url=https://www.sciencedirect.com/science/article/pii/S0034425720305344 |journal=Remote Sensing of Environment |volume=253 |pages=112161 |doi=10.1016/j.rse.2020.112161 |bibcode=2021RSEnv.25312161C |issn=0034-4257}}</ref> |- |Murcia, Spain |Alluvial and fluvial sediments |26 (2004-2008) |Groundwater extraction |Damage on 150 buildings |Closure of urban wells |<ref>{{Cite journal |last1=Tomas |first1=R. |last2=Herrera |first2=G. |last3=Cooksley |first3=G. |last4=Mulas |first4=J. |date=2011-04-11 |title=Persistent Scatterer Interferometry subsidence data exploitation using spatial tools: The Vega Media of the Segura River Basin case study |url=https://www.sciencedirect.com/science/article/pii/S0022169411000928 |journal=Journal of Hydrology |volume=400 |issue=3 |pages=411–428 |doi=10.1016/j.jhydrol.2011.01.057 |bibcode=2011JHyd..400..411T |issn=0022-1694|url-access=subscription }}</ref><ref>{{Cite journal |last1=Tomás |first1=R. |last2=Herrera |first2=G. |last3=Delgado |first3=J. |last4=Lopez-Sanchez |first4=J. M. |last5=Mallorquí |first5=J. J. |last6=Mulas |first6=J. |date=2010-02-26 |title=A ground subsidence study based on DInSAR data: Calibration of soil parameters and subsidence prediction in Murcia City (Spain) |url=https://www.sciencedirect.com/science/article/pii/S0013795209002944 |journal=Engineering Geology |volume=111 |issue=1 |pages=19–30 |doi=10.1016/j.enggeo.2009.11.004 |bibcode=2010EngGe.111...19T |issn=0013-7952|url-access=subscription }}</ref><ref>{{Cite journal |last1=Tomás |first1=Roberto |last2=Márquez |first2=Yolanda |last3=Lopez-Sanchez |first3=Juan M. |last4=Delgado |first4=José |last5=Blanco |first5=Pablo |last6=Mallorquí |first6=Jordi J. |last7=Martínez |first7=Mónica |last8=Herrera |first8=Gerardo |last9=Mulas |first9=Joaquín |date=2005-10-15 |title=Mapping ground subsidence induced by aquifer overexploitation using advanced Differential SAR Interferometry: Vega Media of the Segura River (SE Spain) case study |url=https://www.sciencedirect.com/science/article/pii/S003442570500249X |journal=Remote Sensing of Environment |volume=98 |issue=2 |pages=269–283 |doi=10.1016/j.rse.2005.08.003 |bibcode=2005RSEnv..98..269T |issn=0034-4257|url-access=subscription }}</ref> |- |Patos-Marinza oil field, Albania |Carbonates and siliciclastic deposits |15 (2015-2018) |Extraction of petroleum | | |<ref>{{Cite journal |last1=Métois |first1=Marianne |last2=Benjelloun |first2=Mouna |last3=Lasserre |first3=Cécile |last4=Grandin |first4=Raphaël |last5=Barrier |first5=Laurie |last6=Dushi |first6=Edmond |last7=Koçi |first7=Rexhep |date=2020-03-24 |title=Subsidence associated with oil extraction, measured from time series analysis of Sentinel-1 data: case study of the Patos-Marinza oil field, Albania |url=https://se.copernicus.org/articles/11/363/2020/ |journal=Solid Earth |language=English |volume=11 |issue=2 |pages=363–378 |doi=10.5194/se-11-363-2020 |doi-access=free |bibcode=2020SolE...11..363M |issn=1869-9510}}</ref> |- |San Joaquin Valley, California, USA |Alluvial and lacustrine sediments. |500 (1923-1970) 80 (1921-1960) |Groundwater extraction | |Importation of surface water to agricultural areas in the San Joaquin Valley, California, via the California Aqueduct from the late 1960s. |<ref>{{Cite journal |last=Smith |first=Ryan |date=November 2023 |title=Aquifer Stress History Contributes to Historic Shift in Subsidence in the San Joaquin Valley, California |journal=Water Resources Research |language=en |volume=59 |issue=11 |doi=10.1029/2023WR035804 |bibcode=2023WRR....5935804S |issn=0043-1397|doi-access=free }}</ref><ref>{{Cite book |last=Johnson |first=A.I. |title=National contributions by TC12 land subsidence committee members. USA |date=1992 |publisher=Proc. 12th Int. Conf. Soil Mech. and Found. Eng. |pages=3211–3214}}</ref><ref name=":1">{{Cite book |title=Guidebook to studies of land subsidence due to ground-water withdrawal |date=1984 |publisher=Unesco |isbn=978-92-3-102213-5 |editor-last=Poland |editor-first=J. F. |series=Studies and reports in hydrology |location=Paris |editor-last2=International Hydrological Programme}}</ref> |- |Shanghai, China |Marine sediments |87 (2019-2020) |Groundwater extraction |The economic loss caused by ground subsidence in Shanghai from 2001 to 2020 amounted to over 24.57 billion yuan. |Restriction of groundwater use, artificial recharge with treated river water, and adjustment of pumping patterns |<ref>{{Cite journal |last1=Zhang |first1=Zhihua |last2=Hu |first2=Changtao |last3=Wu |first3=Zhihui |last4=Zhang |first4=Zhen |last5=Yang |first5=Shuwen |last6=Yang |first6=Wang |date=2023-05-17 |title=Monitoring and analysis of ground subsidence in Shanghai based on PS-InSAR and SBAS-InSAR technologies |journal=Scientific Reports |language=en |volume=13 |issue=1 |pages=8031 |doi=10.1038/s41598-023-35152-1 |pmid=37198287 |bibcode=2023NatSR..13.8031Z |issn=2045-2322|pmc=10192325 }}</ref><ref>{{Cite journal |last1=Xu |first1=Ye-Shuang |last2=Ma |first2=Lei |last3=Du |first3=Yan-Jun |last4=Shen |first4=Shui-Long |date=2012-09-01 |title=Analysis of urbanisation-induced land subsidence in Shanghai |url=https://doi.org/10.1007/s11069-012-0220-7 |journal=Natural Hazards |language=en |volume=63 |issue=2 |pages=1255–1267 |doi=10.1007/s11069-012-0220-7 |bibcode=2012NatHa..63.1255X |issn=1573-0840|url-access=subscription }}</ref> |- |Tehran, Iran |Alluvial sediments |217 (2017-2019) |Groundwater extraction | | |<ref name=":3">{{Cite journal |last1=Moradi |first1=Aydin |last2=Emadodin |first2=Somayeh |last3=Beitollahi |first3=Ali |last4=Abdolazimi |first4=Hadi |last5=Ghods |first5=Babak |date=2023-11-15 |title=Assessments of land subsidence in Tehran metropolitan, Iran, using Sentinel-1A InSAR |url=https://doi.org/10.1007/s12665-023-11225-2 |journal=Environmental Earth Sciences |language=en |volume=82 |issue=23 |pages=569 |doi=10.1007/s12665-023-11225-2 |bibcode=2023EES....82..569M |issn=1866-6299|url-access=subscription }}</ref><ref>{{Cite journal |last1=Yousefi |first1=Roghayeh |last2=Talebbeydokhti |first2=Nasser |date=2021-06-01 |title=Subsidence monitoring by integration of time series analysis from different SAR images and impact assessment of stress and aquitard thickness on subsidence in Tehran, Iran |url=https://doi.org/10.1007/s12665-021-09714-3 |journal=Environmental Earth Sciences |language=en |volume=80 |issue=11 |pages=418 |doi=10.1007/s12665-021-09714-3 |bibcode=2021EES....80..418Y |issn=1866-6299|url-access=subscription }}</ref><ref>{{Cite journal |last1=Motagh |first1=Mahdi |last2=Walter |first2=Thomas R. |last3=Sharifi |first3=Mohammad Ali |last4=Fielding |first4=Eric |last5=Schenk |first5=Andreas |last6=Anderssohn |first6=Jan |last7=Zschau |first7=Jochen |date=August 2008 |title=Land subsidence in Iran caused by widespread water reservoir overexploitation |url=https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2008GL033814 |journal=Geophysical Research Letters |language=en |volume=35 |issue=16 |doi=10.1029/2008GL033814 |bibcode=2008GeoRL..3516403M |issn=0094-8276}}</ref> |- |Venice, Italy |Deltaic and lagoon deposits |1 (before 1952) 6.5 (1952-1968) 4 (2003-2010) |Groundwater extraction | |Decrease of groundwater extraction. Some areas were supplied from water from inland. |<ref>{{Cite journal |last1=Tosi |first1=Luigi |last2=Teatini |first2=Pietro |last3=Strozzi |first3=Tazio |date=2013-09-26 |title=Natural versus anthropogenic subsidence of Venice |journal=Scientific Reports |language=en |volume=3 |issue=1 |page=2710 |doi=10.1038/srep02710 |issn=2045-2322 |pmc=3783893 |pmid=24067871|bibcode=2013NatSR...3.2710T }}</ref><ref name=":1" /> |} == See also == *[[Cave-in]] *[[Lateral and subjacent support]], a related concept in [[property law]] *[[Mass wasting]] *[[Settlement (structural)]] *[[Sinkhole]] *[[Soil liquefaction]] *[[UNESCO Working Group on Land Subsidence]] *[[Sea level rise]] ==References== {{Commons category}} {{Wiktionary}} {{Reflist}} {{Geologic Principles|state=collapsed}} {{Authority control}} [[Category:Depressions (geology)]] [[Category:Soil mechanics]] [[Category:Building defects]] [[Category:Geomorphology]] [[Category:Vertical position]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Authority control
(
edit
)
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite web
(
edit
)
Template:Commons category
(
edit
)
Template:Convert
(
edit
)
Template:Distinguish
(
edit
)
Template:Doi
(
edit
)
Template:Excerpt
(
edit
)
Template:Geologic Principles
(
edit
)
Template:Main
(
edit
)
Template:Reflist
(
edit
)
Template:See also
(
edit
)
Template:Short description
(
edit
)
Template:Sister project
(
edit
)
Template:Webarchive
(
edit
)
Template:Wiktionary
(
edit
)