Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Symplectic group
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Mathematical group}}{{for| finite groups with all characteristic abelian subgroups cyclic|group of symplectic type}} {{Lie groups |Classical}} {{Group theory sidebar |Topological}} In [[mathematics]], the name '''symplectic group''' can refer to two different, but closely related, collections of mathematical [[Group (mathematics)|groups]], denoted {{math|Sp(2''n'', '''F''')}} and {{math|Sp(''n'')}} for positive integer ''n'' and [[field (mathematics)|field]] '''F''' (usually '''C''' or '''R'''). The latter is called the '''compact symplectic group''' and is also denoted by <math>\mathrm{U Sp}(n)</math>. Many authors prefer slightly different notations, usually differing by factors of {{math|2}}. The notation used here is consistent with the size of the most common [[Matrix (math)|matrices]] which represent the groups. In [[Élie Cartan|Cartan]]'s classification of the [[simple Lie algebra]]s, the Lie algebra of the complex group {{math|Sp(2''n'', '''C''')}} is denoted {{math|''C<sub>n</sub>''}}, and {{math|Sp(''n'')}} is the [[Real form (Lie theory)#Compact real form|compact real form]] of {{math|Sp(2''n'', '''C''')}}. Note that when we refer to ''the'' (compact) symplectic group it is implied that we are talking about the collection of (compact) symplectic groups, indexed by their dimension {{math|''n''}}. The name "[[Symplectic topology|symplectic]] group" was coined by [[Hermann Weyl]] as a replacement for the previous confusing names ('''line''') '''complex group''' and '''Abelian linear group''', and is the Greek analog of "complex". The [[metaplectic group]] is a double cover of the symplectic group over '''R'''; it has analogues over other [[local field]]s, [[finite field]]s, and [[adele ring]]s. =={{math|Sp(2''n'', '''F''')}}== The symplectic group is a [[classical group]] defined as the set of [[linear transformations]] of a {{math|2''n''}}-dimensional [[vector space]] over the field {{math|'''F'''}} which preserve a [[nondegenerate form|non-degenerate]] [[skew-symmetric matrix|skew-symmetric]] [[bilinear form]]. Such a vector space is called a [[symplectic vector space]], and the symplectic group of an abstract symplectic vector space {{math|''V''}} is denoted {{math|Sp(''V'')}}. Upon fixing a basis for {{math|''V''}}, the symplectic group becomes the group of {{math|2''n'' × 2''n''}} [[symplectic matrix|symplectic matrices]], with entries in {{math|'''F'''}}, under the operation of [[matrix multiplication]]. This group is denoted either {{math|Sp(2''n'', '''F''')}} or {{math|Sp(''n'', '''F''')}}. If the bilinear form is represented by the [[nonsingular matrix|nonsingular]] [[skew-symmetric matrix]] Ω, then :<math>\operatorname{Sp}(2n, F) = \{M \in M_{2n \times 2n}(F) : M^\mathrm{T} \Omega M = \Omega\},</math> where ''M''<sup>T</sup> is the [[transpose]] of ''M''. Often Ω is defined to be :<math>\Omega = \begin{pmatrix} 0 & I_n \\ -I_n & 0 \\ \end{pmatrix},</math> where ''I<sub>n</sub>'' is the identity matrix. In this case, {{math|Sp(2''n'', '''F''')}} can be expressed as those block matrices <math>(\begin{smallmatrix} A & B \\ C & D \end{smallmatrix})</math>, where <math>A, B, C, D \in M_{n \times n}(F)</math>, satisfying the three equations: :<math>\begin{align} -C^\mathrm{T}A + A^\mathrm{T}C &= 0, \\ -C^\mathrm{T}B + A^\mathrm{T}D &= I_n, \\ -D^\mathrm{T}B + B^\mathrm{T}D &= 0. \end{align}</math> Since all symplectic matrices have [[determinant]] {{math|1}}, the symplectic group is a [[subgroup]] of the [[special linear group]] {{math|SL(2''n'', '''F''')}}. When {{math|1=''n'' = 1}}, the symplectic condition on a matrix is satisfied [[if and only if]] the determinant is one, so that {{math|1=Sp(2, '''F''') = SL(2, '''F''')}}. For {{math|''n'' > 1}}, there are additional conditions, i.e. {{math|Sp(2''n'', '''F''')}} is then a proper subgroup of {{math|SL(2''n'', '''F''')}}. Typically, the field {{math|'''F'''}} is the field of [[real number]]s {{math|'''R'''}} or [[complex number]]s {{math|'''C'''}}. In these cases {{math|Sp(2''n'', '''F''')}} is a real or complex [[Lie group]] of real or complex dimension {{math|''n''(2''n'' + 1)}}, respectively. These groups are [[connected space|connected]] but [[Compact group|non-compact]]. The [[Center (group theory)|center]] of {{math|Sp(2''n'', '''F''')}} consists of the matrices {{math|''I''<sub>2''n''</sub>}} and {{math|−''I''<sub>2''n''</sub>}} as long as the [[Characteristic (algebra)|characteristic of the field]] is not {{math|2}}.<ref>[http://www.encyclopediaofmath.org/index.php/Symplectic_group "Symplectic group"], ''[[Encyclopedia of Mathematics]]'' Retrieved on 13 December 2014.</ref> Since the center of {{math|Sp(2''n'', '''F''')}} is discrete and its quotient modulo the center is a [[simple group]], {{math|Sp(2''n'', '''F''')}} is considered a [[Simple Lie group#Comments on the definition|simple Lie group]]. The real rank of the corresponding Lie algebra, and hence of the Lie group {{math|Sp(2''n'', '''F''')}}, is {{math|''n''}}. The [[Lie algebra]] of {{math|Sp(2''n'', '''F''')}} is the set :<math>\mathfrak{sp}(2n,F) = \{X \in M_{2n \times 2n}(F) : \Omega X + X^\mathrm{T} \Omega = 0\},</math> equipped with the [[Commutator#Ring theory|commutator]] as its Lie bracket.<ref>{{harvnb|Hall|2015}} Prop. 3.25</ref> For the standard skew-symmetric bilinear form <math>\Omega = (\begin{smallmatrix} 0 & I \\ -I & 0 \end{smallmatrix})</math>, this Lie algebra is the set of all block matrices <math>(\begin{smallmatrix} A & B \\ C & D \end{smallmatrix})</math> subject to the conditions :<math>\begin{align} A &= -D^\mathrm{T}, \\ B &= B^\mathrm{T}, \\ C &= C^\mathrm{T}. \end{align}</math> ==={{math|Sp(2''n'', '''C''')}}=== The symplectic group over the field of complex numbers is a [[Compact group|non-compact]], [[simply connected]], [[simple Lie group]]. The definition of this group includes '''no''' conjugates (contrary to what one might naively expect) but instead it is exactly the same as the definition bar the field change.{{sfn|Hall|2015|p=10}} ==={{math|Sp(2''n'', '''R''')}}=== {{math|Sp(''n'', '''C''')}} is the [[Complexification (Lie group)|complexification]] of the real group {{math|Sp(2''n'', '''R''')}}. {{math|Sp(2''n'', '''R''')}} is a real, [[Compact group|non-compact]], [[Connected space|connected]], [[simple Lie group]].<ref>[https://math.stackexchange.com/q/1051400 "Is the symplectic group Sp(2''n'', '''R''') simple?"], ''[[Stack Exchange]]'' Retrieved on 14 December 2014.</ref> It has a [[fundamental group]] [[Group isomorphism|isomorphic]] to the group of [[integers]] under addition. As the [[real form]] of a [[simple Lie group]] its Lie algebra is a [[Split Lie algebra|splittable Lie algebra]]. Some further properties of {{math|Sp(2''n'', '''R''')}}: * The [[exponential map (Lie theory)|exponential map]] from the [[Lie algebra]] {{math|'''sp'''(2''n'', '''R''')}} to the group {{math|Sp(2''n'', '''R''')}} is not [[Surjective function|surjective]]. However, any element of the group can be represented as the product of two exponentials.<ref>[https://math.stackexchange.com/q/1051255 "Is the exponential map for Sp(2''n'', '''R''') surjective?"], ''[[Stack Exchange]]'' Retrieved on 5 December 2014.</ref> In other words, ::<math>\forall S \in \operatorname{Sp}(2n,\mathbf{R})\,\, \exists X,Y \in \mathfrak{sp}(2n,\mathbf{R}) \,\, S = e^Xe^Y. </math> * For all {{math|''S''}} in {{math|Sp(2''n'', '''R''')}}: ::<math>S = OZO' \quad \text{such that} \quad O, O' \in \operatorname{Sp}(2n,\mathbf{R})\cap\operatorname{SO}(2n) \cong U(n) \quad \text{and} \quad Z = \begin{pmatrix}D & 0 \\ 0 & D^{-1}\end{pmatrix}.</math> :The matrix {{math|''D''}} is [[Positive-definite matrix|positive-definite]] and [[Diagonal matrix|diagonal]]. The set of such {{math|''Z''}}s forms a non-compact subgroup of {{math|Sp(2''n'', '''R''')}} whereas {{math|U(''n'')}} forms a compact subgroup. This decomposition is known as 'Euler' or 'Bloch–Messiah' decomposition.<ref>[https://www.maths.nottingham.ac.uk/personal/ga/papers/2602.pdf "Standard forms and entanglement engineering of multimode Gaussian states under local operations – Serafini and Adesso"], Retrieved on 30 January 2015.</ref> Further [[symplectic matrix]] properties can be found on that Wikipedia page. * As a [[Lie group]], {{math|Sp(2''n'', '''R''')}} has a manifold structure. The [[manifold]] for {{math|Sp(2''n'', '''R''')}} is [[Diffeomorphism|diffeomorphic]] to the [[Manifold#Cartesian products|Cartesian product]] of the [[unitary group]] {{math|U(''n'')}} with a [[vector space]] of dimension {{math|''n''(''n''+1)}}.<ref>[http://www.maths.ed.ac.uk/~aar/papers/arnogive.pdf "Symplectic Geometry – Arnol'd and Givental"], Retrieved on 30 January 2015.</ref> ===Infinitesimal generators=== The members of the symplectic Lie algebra {{math|'''sp'''(2''n'', '''F''')}} are the [[Hamiltonian matrix|Hamiltonian matrices]]. These are matrices, <math>Q</math> such that<blockquote><math>Q = \begin{pmatrix} A & B \\ C & -A^\mathrm{T} \end{pmatrix}</math></blockquote>where {{math|''B''}} and {{math|''C''}} are [[Symmetric matrix|symmetric matrices]]. See [[classical group]] for a derivation. ===Example of symplectic matrices=== For {{math|Sp(2, '''R''')}}, the group of {{math|2 × 2}} matrices with determinant {{math|1}}, the three symplectic {{math|(0, 1)}}-matrices are:<ref>[http://mathworld.wolfram.com/SymplecticGroup.html Symplectic Group], (source: [[Wolfram MathWorld]]), downloaded February 14, 2012</ref><blockquote><math>\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},\quad \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}\quad \text{and} \quad \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}. </math></blockquote> ==== Sp(2n, R) ==== It turns out that <math>\operatorname{Sp}(2n,\mathbf{R})</math> can have a fairly explicit description using generators. If we let <math>\operatorname{Sym}(n)</math> denote the symmetric <math>n\times n</math> matrices, then <math>\operatorname{Sp}(2n,\mathbf{R})</math> is generated by <math>D(n)\cup N(n) \cup \{\Omega\},</math> where<blockquote><math>\begin{align} D(n) &= \left\{ \left. \begin{bmatrix} A & 0 \\ 0 & (A^T)^{-1} \end{bmatrix} \,\right| \, A \in \operatorname{GL}(n, \mathbf{R}) \right\} \\[6pt] N(n) &= \left\{ \left. \begin{bmatrix} I_n & B \\ 0 & I_n \end{bmatrix} \, \right| \, B \in \operatorname{Sym}(n)\right\} \end{align}</math></blockquote>are subgroups of <math>\operatorname{Sp}(2n,\mathbf{R})</math><ref>{{Cite book|last=Gerald B. Folland.|url=https://www.worldcat.org/oclc/945482850|title=Harmonic analysis in phase space|date=2016|publisher=Princeton Univ Press|isbn=978-1-4008-8242-7|location=Princeton|page=173|oclc=945482850}}</ref><sup>pg 173</sup><ref>{{Cite book|last=Habermann, Katharina, 1966-|url=http://worldcat.org/oclc/262692314|title=Introduction to symplectic Dirac operators|date=2006|publisher=Springer|isbn=978-3-540-33421-7|oclc=262692314}}</ref><sup>pg 2</sup>. ===Relationship with symplectic geometry=== [[Symplectic geometry]] is the study of [[symplectic manifold]]s. The [[tangent space]] at any point on a symplectic manifold is a [[symplectic vector space]].<ref>[https://empg.maths.ed.ac.uk/Activities/BRST/ "Lecture Notes – Lecture 2: Symplectic reduction"], Retrieved on 30 January 2015.</ref> As noted earlier, structure preserving transformations of a symplectic vector space form a [[Group (mathematics)|group]] and this group is {{math|Sp(2''n'', '''F''')}}, depending on the dimension of the space and the [[Field (mathematics)|field]] over which it is defined. A symplectic vector space is itself a symplectic manifold. A transformation under an [[Group action (mathematics)|action]] of the symplectic group is thus, in a sense, a linearised version of a [[symplectomorphism]] which is a more general structure preserving transformation on a symplectic manifold. =={{math|Sp(''n'')}}== The '''compact symplectic group'''<ref>{{harvnb|Hall|2015}} Section 1.2.8</ref> {{math|Sp(''n'')}} is the intersection of {{math|Sp(2''n'', '''C''')}} with the <math>2n\times 2n</math> unitary group: :<math>\operatorname{Sp}(n):=\operatorname{Sp}(2n;\mathbf C)\cap\operatorname{U}(2n)=\operatorname{Sp}(2n;\mathbf C)\cap\operatorname {SU} (2n).</math> It is sometimes written as {{math|USp(2''n'')}}. Alternatively, {{math|Sp(''n'')}} can be described as the subgroup of {{math|GL(''n'', '''H''')}} (invertible [[quaternion]]ic matrices) that preserves the standard [[hermitian form]] on {{math|'''H'''<sup>''n''</sup>}}: :<math>\langle x, y\rangle = \bar x_1 y_1 + \cdots + \bar x_n y_n.</math> That is, {{math|Sp(''n'')}} is just the [[Classical group#Sp(p, q) – the quaternionic unitary group|quaternionic unitary group]], {{math|U(''n'', '''H''')}}.<ref>{{harvnb|Hall|2015}} p. 14</ref> Indeed, it is sometimes called the '''hyperunitary group'''. Also Sp(1) is the group of quaternions of norm {{math|1}}, equivalent to {{math|[[SU(2)]]}} and topologically a [[3-sphere|{{math|3}}-sphere]] {{math|S<sup>3</sup>}}. Note that {{math|Sp(''n'')}} is ''not'' a symplectic group in the sense of the previous section—it does not preserve a non-degenerate skew-symmetric {{math|'''H'''}}-bilinear form on {{math|'''H'''<sup>''n''</sup>}}: there is no such form except the zero form. Rather, it is isomorphic to a subgroup of {{math|Sp(2''n'', '''C''')}}, and so does preserve a complex [[symplectic manifold | symplectic form]] in a vector space of twice the dimension. As explained below, the Lie algebra of {{math|Sp(''n'')}} is the compact [[real form]] of the complex symplectic Lie algebra {{math|'''sp'''(2''n'', '''C''')}}. {{math|Sp(''n'')}} is a real Lie group with (real) dimension {{math|''n''(2''n'' + 1)}}. It is [[Compact space|compact]] and [[simply connected]].<ref>{{harvnb|Hall|2015}} Prop. 13.12</ref> The Lie algebra of {{math|Sp(''n'')}} is given by the quaternionic [[skew-Hermitian]] matrices, the set of {{math|''n''-by-''n''}} quaternionic matrices that satisfy :<math>A+A^{\dagger} = 0</math> where {{math|A<sup>†</sup>}} is the [[conjugate transpose]] of {{math|A}} (here one takes the quaternionic conjugate). The Lie bracket is given by the commutator. ===Important subgroups=== Some main subgroups are: : <math>\operatorname{Sp}(n) \supset \operatorname{Sp}(n-1)</math> : <math>\operatorname{Sp}(n) \supset \operatorname{U}(n) </math> : <math>\operatorname{Sp}(2) \supset \operatorname{O}(4)</math> Conversely it is itself a subgroup of some other groups: : <math>\operatorname{SU}(2n) \supset \operatorname{Sp}(n)</math> : <math>\operatorname{F}_4 \supset \operatorname{Sp}(4)</math> : <math>\operatorname{G}_2 \supset \operatorname{Sp}(1)</math> There are also the [[isomorphism]]s of the [[Lie algebras]] {{math|1='''sp'''(2) = '''so'''(5)}} and {{math|1='''sp'''(1) = '''so'''(3) = '''su'''(2)}}. ==Relationship between the symplectic groups== Every complex, [[semisimple Lie algebra]] has a [[Real form (Lie theory)#Split real form|split real form]] and a [[Real form (Lie theory)#Compact real form|compact real form]]; the former is called a [[complexification]] of the latter two. The Lie algebra of {{math|Sp(2''n'', '''C''')}} is [[Semisimple Lie algebra|semisimple]] and is denoted {{math|'''sp'''(2''n'', '''C''')}}. Its [[Real form (Lie theory)#Split real form|split real form]] is {{math|'''sp'''(2''n'', '''R''')}} and its [[Real form (Lie theory)#Compact real form|compact real form]] is {{math|'''sp'''(''n'')}}. These correspond to the Lie groups {{math|Sp(2''n'', '''R''')}} and {{math|Sp(''n'')}} respectively. The algebras, {{math|'''sp'''(''p'', ''n'' − ''p'')}}, which are the Lie algebras of {{math|Sp(''p'', ''n'' − ''p'')}}, are the [[Metric signature|indefinite signature]] equivalent to the compact form. ==Physical significance== ===Classical mechanics=== The non-compact symplectic group {{math|Sp(2''n'', '''R''')}} comes up in classical physics as the symmetries of canonical coordinates preserving the Poisson bracket. Consider a system of {{math|''n''}} particles, evolving under [[Hamiltonian mechanics|Hamilton's equations]] whose position in [[phase space]] at a given time is denoted by the vector of [[canonical coordinates]], :<math>\mathbf{z} = (q^1, \ldots , q^n, p_1, \ldots , p_n)^\mathrm{T}.</math> The elements of the group {{math|Sp(2''n'', '''R''')}} are, in a certain sense, [[canonical transformations]] on this vector, i.e. they preserve the form of [[Hamiltonian mechanics|Hamilton's equations]].<ref>{{harvnb|Arnold|1989}} gives an extensive mathematical overview of classical mechanics. See chapter 8 for [[symplectic manifold]]s.</ref><ref name="A&M" /> If :<math>\mathbf{Z} = \mathbf Z(\mathbf z, t) = (Q^1, \ldots , Q^n, P_1, \ldots , P_n)^\mathrm{T}</math> are new canonical coordinates, then, with a dot denoting time derivative, :<math>\dot {\mathbf Z} = M({\mathbf z}, t) \dot {\mathbf z},</math> where :<math>M(\mathbf z, t) \in \operatorname{Sp}(2n, \mathbf R)</math> for all {{mvar|t}} and all {{math|'''z'''}} in phase space.<ref>{{harvnb|Goldstein|1980|loc=Section 9.3}}</ref> For the special case of a [[Riemannian manifold]], Hamilton's equations describe the [[geodesic]]s on that manifold. The coordinates <math>q^i</math> live on the underlying manifold, and the momenta <math>p_i</math> live in the [[cotangent bundle]]. This is the reason why these are conventionally written with upper and lower indexes; it is to distinguish their locations. The corresponding Hamiltonian consists purely of the kinetic energy: it is <math>H=\tfrac{1}{2}g^{ij}(q)p_ip_j</math> where <math>g^{ij}</math> is the inverse of the [[metric tensor]] <math>g_{ij}</math> on the Riemannian manifold.<ref>Jurgen Jost, (1992) ''Riemannian Geometry and Geometric Analysis'', Springer.</ref><ref name="A&M">[[Ralph Abraham (mathematician)|Ralph Abraham]] and [[Jerrold E. Marsden]], ''Foundations of Mechanics'', (1978) Benjamin-Cummings, London {{isbn|0-8053-0102-X}}</ref> In fact, the cotangent bundle of ''any'' smooth manifold can be a given a [[symplectic manifold|symplectic structure]] in a canonical way, with the symplectic form defined as the [[exterior derivative]] of the [[tautological one-form]].<ref>{{Cite book|last=da Silva|first=Ana Cannas|url=http://link.springer.com/10.1007/978-3-540-45330-7|title=Lectures on Symplectic Geometry|date=2008|publisher=Springer Berlin Heidelberg|isbn=978-3-540-42195-5|series=Lecture Notes in Mathematics|volume=1764|location=Berlin, Heidelberg|pages=9|doi=10.1007/978-3-540-45330-7}}</ref> ===Quantum mechanics=== {{More citations needed section|date=October 2019}} Consider a system of {{math|''n''}} particles whose [[quantum state]] encodes its position and momentum. These coordinates are continuous variables and hence the [[Hilbert space]], in which the state lives, is infinite-dimensional. This often makes the analysis of this situation tricky. An alternative approach is to consider the evolution of the position and momentum operators under the [[Heisenberg picture|Heisenberg equation]] in [[phase space]]. Construct a vector of [[canonical coordinates]], :<math>\mathbf{\hat{z}} = (\hat{q}^1, \ldots , \hat{q}^n, \hat{p}_1, \ldots , \hat{p}_n)^\mathrm{T}. </math> The [[canonical commutation relation]] can be expressed simply as :<math> [\mathbf{\hat{z}},\mathbf{\hat{z}}^\mathrm{T}] = i\hbar\Omega </math> where :<math> \Omega = \begin{pmatrix} \mathbf{0} & I_n \\ -I_n & \mathbf{0}\end{pmatrix} </math> and {{math|''I''<sub>''n''</sub>}} is the {{math|''n'' × ''n''}} identity matrix. Many physical situations only require quadratic [[Hamiltonian (quantum mechanics)|Hamiltonians]], i.e. [[Hamiltonian (quantum mechanics)|Hamiltonians]] of the form :<math>\hat{H} = \frac{1}{2}\mathbf{\hat{z}}^\mathrm{T} K\mathbf{\hat{z}}</math> where {{math|''K''}} is a {{math|2''n'' × 2''n''}} real, [[symmetric matrix]]. This turns out to be a useful restriction and allows us to rewrite the [[Heisenberg picture|Heisenberg equation]] as :<math>\frac{d\mathbf{\hat{z}}}{dt} = \Omega K \mathbf{\hat{z}}</math> The solution to this equation must preserve the [[canonical commutation relation]]. It can be shown that the time evolution of this system is equivalent to an [[Group action (mathematics)|action]] of [[Symplectic group#Sp.282n.2C R.29|the real symplectic group, {{math|Sp(2''n'', '''R''')}}]], on the phase space. ==See also== * [[Hamiltonian mechanics]] * [[Metaplectic group]] * [[Orthogonal group]] * [[Paramodular group]] * [[Projective unitary group]] * [[Representations of classical Lie groups]] * [[Symplectic manifold]], [[Symplectic matrix]], [[Symplectic vector space]], [[Symplectic representation]] * [[Unitary group]] * [[Θ10]] ==Notes== {{reflist}} ==References== *{{citation|last=Arnold|first=V. I.|title=Mathematical Methods of Classical Mechanics|year=1989|edition=second|publisher=[[Springer-Verlag]]|series=[[Graduate Texts in Mathematics]]|volume=60|isbn=0-387-96890-3|author-link=Vladimir Arnold|url-access=registration|url=https://archive.org/details/mathematicalmeth0000arno}} *{{Citation| last=Hall|first=Brian C.|title=Lie groups, Lie algebras, and representations: An elementary introduction|edition=2nd|series=Graduate Texts in Mathematics|volume=222|publisher=Springer|year=2015|isbn=978-3319134666}} *{{citation|last1=Fulton|first1=W.|last2=Harris|first2=J.|author-link=William Fulton (mathematician)|author-link2=Joe Harris (mathematician)|title=Representation Theory, A first Course|year=1991|publisher=[[Springer-Verlag]]|series=[[Graduate Texts in Mathematics]]|volume=129|isbn=978-0-387-97495-8}}. *{{cite book|last=Goldstein|first=H.|author-link=Herbert Goldstein|title=Classical Mechanics|edition=2nd|publisher=[[Addison-Wesley Publishing Company|Addison-Wesley]]|location=Reading MA|isbn=0-201-02918-9|year=1980|orig-year=1950|chapter=Chapter 7}} *{{citation|last = Lee|first = J. M.|title=Introduction to Smooth manifolds|year=2003|publisher=[[Springer-Verlag]]|series=[[Graduate Texts in Mathematics]]|isbn=0-387-95448-1|volume=218}} *{{citation|last=Rossmann|first= Wulf|title=Lie Groups – An Introduction Through Linear Groups|publisher=Oxford Science Publications|year=2002|series=Oxford Graduate Texts in Mathematics|isbn=0-19-859683-9}} *{{cite arXiv|last1=Ferraro|first1=Alessandro|last2=Olivares|first2=Stefano|last3=Paris|first3=Matteo G. A.|title=Gaussian states in continuous variable quantum information| date=March 2005 |eprint=quant-ph/0503237|mode=cs2}}. {{Authority control}} [[Category:Lie groups]] [[Category:Symplectic geometry]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Authority control
(
edit
)
Template:Citation
(
edit
)
Template:Cite arXiv
(
edit
)
Template:Cite book
(
edit
)
Template:For
(
edit
)
Template:Group theory sidebar
(
edit
)
Template:Harvnb
(
edit
)
Template:Isbn
(
edit
)
Template:Lie groups
(
edit
)
Template:Math
(
edit
)
Template:More citations needed section
(
edit
)
Template:Mvar
(
edit
)
Template:Reflist
(
edit
)
Template:Sfn
(
edit
)
Template:Short description
(
edit
)