Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Symplectic matrix
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Mathematical concept}} In mathematics, a '''symplectic matrix''' is a <math>2n\times 2n</math> [[matrix (mathematics)|matrix]] <math>M</math> with [[real number|real]] entries that satisfies the condition {{NumBlk||<math display="block">M^\text{T} \Omega M = \Omega,</math>|{{EquationRef|1}}}} where <math>M^\text{T}</math> denotes the [[transpose]] of <math>M</math> and <math>\Omega</math> is a fixed <math>2n\times 2n</math> [[nonsingular matrix|nonsingular]], [[skew-symmetric matrix]]. This definition can be extended to <math>2n\times 2n</math> matrices with entries in other [[field (mathematics)|field]]s, such as the [[complex number]]s, [[finite field]]s, [[p-adic number|''p''-adic number]]s, and [[Function field of an algebraic variety|function fields]]. Typically <math>\Omega</math> is chosen to be the [[block matrix]] <math display="block"> \Omega = \begin{bmatrix} 0 & I_n \\ -I_n & 0 \\ \end{bmatrix}, </math> where <math>I_n</math> is the <math>n\times n</math> [[identity matrix]]. The matrix <math>\Omega</math> has [[determinant]] <math>+1</math> and its inverse is <math>\Omega^{-1} = \Omega^\text{T} = -\Omega</math>. ==Properties== === Generators for symplectic matrices === Every symplectic matrix has determinant <math>+1</math>, and the <math>2n\times 2n</math> symplectic matrices with real entries form a [[subgroup]] of the [[general linear group]] <math>\mathrm{GL}(2n;\mathbb{R})</math> under [[matrix multiplication]] since being symplectic is a property stable under matrix multiplication. [[Topology|Topologically]], this [[symplectic group]] is a [[connected space|connected]] [[compact space|noncompact]] [[real Lie group]] of real dimension <math>n(2n+1)</math>, and is denoted <math>\mathrm{Sp}(2n;\mathbb{R})</math>. The symplectic group can be defined as the set of [[linear transformations]] that preserve the symplectic form of a real [[symplectic vector space]]. This symplectic group has a distinguished [[Generating set of a group|set of generators]], which can be used to find all possible symplectic matrices. This includes the following sets <math display="block">\begin{align} D(n) =& \left\{ \begin{pmatrix} A & 0 \\ 0 & (A^T)^{-1} \end{pmatrix} : A \in \text{GL}(n;\mathbb{R}) \right\} \\ N(n) =& \left\{ \begin{pmatrix} I_n & B \\ 0 & I_n \end{pmatrix} : B \in \text{Sym}(n;\mathbb{R}) \right\} \end{align}</math> where <math>\text{Sym}(n;\mathbb{R})</math> is the set of <math>n\times n</math> [[Symmetric matrix|symmetric matrices]]. Then, <math>\mathrm{Sp}(2n;\mathbb{R})</math> is generated by the set<ref>{{Cite book|last=Habermann, Katharina, 1966-|url=http://worldcat.org/oclc/262692314|title=Introduction to symplectic Dirac operators|date=2006|publisher=Springer|isbn=978-3-540-33421-7|oclc=262692314}}</ref><sup>p. 2</sup> <math display="block">\{\Omega \} \cup D(n) \cup N(n)</math> of matrices. In other words, any symplectic matrix can be constructed by multiplying matrices in <math>D(n)</math> and <math>N(n)</math> together, along with some power of <math>\Omega</math>. === Inverse matrix === Every symplectic matrix is invertible with the [[inverse matrix]] given by <math display="block"> M^{-1} = \Omega^{-1} M^\text{T} \Omega. </math> Furthermore, the [[matrix multiplication|product]] of two symplectic matrices is, again, a symplectic matrix. This gives the set of all symplectic matrices the structure of a [[group (mathematics)|group]]. There exists a natural [[manifold]] structure on this group which makes it into a (real or complex) [[Lie group]] called the [[symplectic group]]. === Determinantal properties === It follows easily from the definition that the [[determinant]] of any symplectic matrix is ±1. Actually, it turns out that the determinant is always +1 for any field. One way to see this is through the use of the [[Pfaffian]] and the identity <math display="block">\mbox{Pf}(M^\text{T} \Omega M) = \det(M)\mbox{Pf}(\Omega).</math> Since <math>M^\text{T} \Omega M = \Omega</math> and <math>\mbox{Pf}(\Omega) \neq 0</math> we have that <math>\det(M) = 1</math>. When the underlying field is real or complex, one can also show this by factoring the inequality <math>\det(M^\text{T} M + I) \ge 1</math>.<ref>{{cite journal |last=Rim |first=Donsub |date=2017 |title=An elementary proof that symplectic matrices have determinant one |journal=Adv. Dyn. Syst. Appl. |volume=12 |issue=1 |pages=15–20 |doi=10.37622/ADSA/12.1.2017.15-20 |arxiv=1505.04240 |s2cid=119595767 }}</ref> === Block form of symplectic matrices === Suppose Ω is given in the standard form and let <math>M</math> be a <math>2n\times 2n</math> [[block matrix]] given by <math display="block">M = \begin{pmatrix}A & B \\ C & D\end{pmatrix}</math> where <math>A,B,C,D</math> are <math>n\times n</math> matrices. The condition for <math>M</math> to be symplectic is equivalent to the two following equivalent conditions<ref>{{cite web|last1=de Gosson|first1=Maurice|title=Introduction to Symplectic Mechanics: Lectures I-II-III|url=https://www.ime.usp.br/~piccione/Downloads/LecturesIME.pdf}}</ref><blockquote><math>A^\text{T}C,B^\text{T}D</math> symmetric, and <math>A^\text{T} D - C^\text{T} B = I</math></blockquote><blockquote><math>AB^\text{T},CD^\text{T}</math> symmetric, and <math>AD^\text{T} - BC^\text{T} = I</math></blockquote>The second condition comes from the fact that if <math>M</math> is symplectic, then <math>M^T</math> is also symplectic. When <math>n=1</math> these conditions reduce to the single condition <math>\det(M)=1</math>. Thus a <math>2\times 2</math> matrix is symplectic [[iff]] it has unit determinant. ==== Inverse matrix of block matrix ==== With <math>\Omega</math> in standard form, the inverse of <math>M</math> is given by <math display="block"> M^{-1} = \Omega^{-1} M^\text{T} \Omega=\begin{pmatrix}D^\text{T} & -B^\text{T} \\-C^\text{T} & A^\text{T}\end{pmatrix}.</math> The group has dimension <math>n(2n+1)</math>. This can be seen by noting that <math>( M^\text{T} \Omega M)^\text{T} = -M^\text{T} \Omega M</math> is anti-symmetric. Since the space of anti-symmetric matrices has dimension <math>\binom{2n}{2},</math> the identity <math> M^\text{T} \Omega M = \Omega</math> imposes <math>2n \choose 2</math> constraints on the <math>(2n)^2</math> coefficients of <math>M</math> and leaves <math>M</math> with <math>n(2n+1)</math> independent coefficients. ==Symplectic transformations== In the abstract formulation of [[linear algebra]], matrices are replaced with [[linear transformation]]s of [[finite-dimensional]] [[vector spaces]]. The abstract analog of a symplectic matrix is a '''symplectic transformation''' of a [[symplectic vector space]]. Briefly, a symplectic vector space <math>(V,\omega)</math> is a <math>2n</math>-dimensional vector space <math>V</math> equipped with a [[nondegenerate form|nondegenerate]], [[skew-symmetric matrix|skew-symmetric]] [[bilinear form]] <math>\omega</math> called the [[symplectic form]]. A symplectic transformation is then a linear transformation <math>L:V\to V</math> which preserves <math>\omega</math>, i.e. <math display="block">\omega(Lu, Lv) = \omega(u, v).</math> Fixing a [[basis (linear algebra)|basis]] for <math>V</math>, <math>\omega</math> can be written as a matrix <math>\Omega</math> and <math>L</math> as a matrix <math>M</math>. The condition that <math>L</math> be a symplectic transformation is precisely the condition that ''M'' be a symplectic matrix: <math display="block">M^\text{T} \Omega M = \Omega.</math> Under a [[change of basis]], represented by a matrix ''A'', we have <math display="block">\Omega \mapsto A^\text{T} \Omega A</math> <math display="block">M \mapsto A^{-1} M A.</math> One can always bring <math>\Omega</math> to either the standard form given in the introduction or the block diagonal form described below by a suitable choice of ''A''. ==The matrix Ω== Symplectic matrices are defined relative to a fixed [[nonsingular matrix|nonsingular]], [[skew-symmetric matrix]] <math>\Omega</math>. As explained in the previous section, <math>\Omega</math> can be thought of as the coordinate representation of a [[nondegenerate form|nondegenerate]] [[skew-symmetric bilinear form]]. It is a basic result in [[linear algebra]] that any two such matrices differ from each other by a [[change of basis]]. The most common alternative to the standard <math>\Omega</math> given above is the [[block diagonal]] form <math display="block">\Omega = \begin{bmatrix} \begin{matrix}0 & 1\\ -1 & 0\end{matrix} & & 0 \\ & \ddots & \\ 0 & & \begin{matrix}0 & 1 \\ -1 & 0\end{matrix} \end{bmatrix}.</math> This choice differs from the previous one by a [[permutation]] of [[basis vectors]]. Sometimes the notation <math>J</math> is used instead of <math>\Omega</math> for the skew-symmetric matrix. This is a particularly unfortunate choice as it leads to confusion with the notion of a [[linear complex structure|complex structure]], which often has the same coordinate expression as <math>\Omega</math> but represents a very different structure. A complex structure <math>J</math> is the coordinate representation of a linear transformation that squares to <math>-I_n</math>, whereas <math>\Omega</math> is the coordinate representation of a nondegenerate skew-symmetric bilinear form. One could easily choose bases in which <math>J</math> is not skew-symmetric or <math>\Omega</math> does not square to <math>-I_n</math>. Given a [[hermitian structure]] on a vector space, <math>J</math> and <math>\Omega</math> are related via <math display="block">\Omega_{ab} = -g_{ac}{J^c}_b</math> where <math>g_{ac}</math> is the [[metric tensor|metric]]. That <math>J</math> and <math>\Omega</math> usually have the same coordinate expression (up to an overall sign) is simply a consequence of the fact that the metric ''g'' is usually the identity matrix. ==Diagonalization and decomposition== {{bullet list |For any [[Positive-definite matrix|positive definite]] symmetric <math>2n\times 2n</math> real symplectic matrix <math>S</math>, there is a symplectic unitary <math>U</math>, <math display="block">U \in \mathrm{U}(2n,\mathbb{R}) \cap \operatorname{Sp}(2n,\mathbb{R}) = \mathrm{O}(2n) \cap \operatorname{Sp}(2n,\mathbb{R}), </math>such that<math display="block">S = U^\text{T} D U \quad \text{for} \quad D = \operatorname{diag}(\lambda_1,\ldots,\lambda_n,\lambda_1^{-1},\ldots,\lambda_n^{-1}),</math>where the diagonal elements of <math>D</math> are the [[Eigenvalues and eigenvectors|eigenvalues]] of <math>S</math>.<ref name=":0">{{Cite book|title=Symplectic Methods in Harmonic Analysis and in Mathematical Physics - Springer|last=de Gosson|first=Maurice A.|language=en|doi=10.1007/978-3-7643-9992-4|year = 2011|isbn = 978-3-7643-9991-7}}</ref><ref>{{cite arXiv|first1=Martin|last1=Houde|first2=Will|last2=McCutcheon|first3=Nicolas|last3=Quesada|title=Matrix decompositions in quantum optics: Takagi/Autonne, Bloch–Messiah/Euler, Iwasawa, and Williamson|at= Sec. V, p. 5 |date=13 March 2024|eprint=2403.04596}}</ref> |Any real symplectic matrix {{math|S}} has a [[polar decomposition]] of the form:<ref name=":0" /><math display="block">S = UR,</math>where<math display="block">U \in \operatorname{Sp}(2n,\mathbb{R})\cap\operatorname{U}(2n,\mathbb{R}),</math> and<math display="block">R \in \operatorname{Sp}(2n,\mathbb{R})\cap\operatorname{Sym}_+(2n,\mathbb{R}).</math> |Any real symplectic matrix can be decomposed as a product of three matrices:<math display="block">S = O\begin{pmatrix}D & 0 \\ 0 & D^{-1}\end{pmatrix}O',</math>where <math>O</math> and <math>O'</math> are both symplectic and [[Orthogonal matrix|orthogonal]], and <math>D</math> is [[Positive-definite matrix|positive-definite]] and [[Diagonal matrix|diagonal]].<ref>{{cite arXiv|first1=Alessandro|last1=Ferraro|first2=Stefano|last2=Olivares|first3=Matteo G. A.|last3=Paris|title=Gaussian states in continuous variable quantum information|at= Sec. 1.3, p. 4 |date=31 March 2005|eprint=quant-ph/0503237}}</ref> This decomposition is closely related to the [[singular value decomposition]] of a matrix and is known as an 'Euler' or 'Bloch-Messiah' decomposition. | The set of orthogonal symplectic matrices forms a (maximal) compact subgroup of the symplectic group.<ref name=":4">{{ cite book|title= Quantum Continuous Variables |last=Serafini|first=Alessio|language=en|doi=10.1201/9781003250975|year = 2023|isbn = 9781003250975}}</ref> This set is isomorphic to the set of unitary matrices of dimension <math> n </math>, <math>\mathrm{U}(2n,\mathbb{R}) \cap \operatorname{Sp}(2n,\mathbb{R}) = \mathrm{O}(2n) \cap \operatorname{Sp}(2n,\mathbb{R}) \cong \mathrm{U}(n,\mathbb{C})</math>. Every symplectic orthogonal matrix can be written as {{NumBlk||<math display="block"> \begin{pmatrix} \Re(V) & -\Im(V) \\ \Im(V) & \Re(V) \end{pmatrix} = \left[\frac{1}{\sqrt{2}}\begin{pmatrix} I_n & i I_n \\ I_n & -i I_n \end{pmatrix} \right]^\dagger \begin{pmatrix} V & 0 \\ 0 & V^* \end{pmatrix} \left[\frac{1}{\sqrt{2}}\begin{pmatrix} I_n & i I_n \\ I_n & -i I_n \end{pmatrix} \right], </math><br/>|{{EquationRef|2}}}} with <math> V \in \mathrm{U}(n,\mathbb{C})</math>. This equation implies that every symplectic orthogonal matrix has determinant equal to +1 and thus that this is true for all symplectic matrices as its polar decomposition is itself given in terms symplectic matrices. }} ==Complex matrices== If instead ''M'' is a {{nowrap|2''n'' × 2''n''}} [[matrix (mathematics)|matrix]] with [[complex number|complex]] entries, the definition is not standard throughout the literature. Many authors <ref>{{cite journal|last = Xu|first= H. G.|title= An SVD-like matrix decomposition and its applications|journal= Linear Algebra and Its Applications|date= July 15, 2003|volume= 368|pages=1–24|doi = 10.1016/S0024-3795(03)00370-7|hdl= 1808/374|hdl-access= free}}</ref> adjust the definition above to {{NumBlk||<math display="block">M^* \Omega M = \Omega\,.</math>|{{EquationRef|3}}}} where ''M<sup>*</sup>'' denotes the [[conjugate transpose]] of ''M''. In this case, the determinant may not be 1, but will have [[absolute value]] 1. In the 2×2 case (''n''=1), ''M'' will be the product of a real symplectic matrix and a complex number of absolute value 1. Other authors <ref>{{Cite report|last1=Mackey |last2= Mackey|first1= D. S. |first2= N.|title= On the Determinant of Symplectic Matrices|year= 2003 |type=Numerical Analysis Report 422|publisher=Manchester Centre for Computational Mathematics|location=Manchester, England }}</ref> retain the definition ({{EquationNote|1}}) for complex matrices and call matrices satisfying ({{EquationNote|3}}) ''conjugate symplectic''. ==Applications== Transformations described by symplectic matrices play an important role in [[Quantum Optics|quantum optics]] and in [[Continuous-variable quantum information|continuous-variable quantum information theory]]. For instance, symplectic matrices can be used to describe [[Bogoliubov transformation|Gaussian (Bogoliubov) transformations]] of a quantum state of light.<ref>{{Cite journal|last1=Weedbrook|first1=Christian|last2=Pirandola|first2=Stefano|last3=García-Patrón|first3=Raúl|last4=Cerf|first4=Nicolas J.|last5=Ralph|first5=Timothy C.|last6=Shapiro|first6=Jeffrey H.|last7=Lloyd|first7=Seth|date=2012|title=Gaussian quantum information|journal=Reviews of Modern Physics|volume=84|issue=2|pages=621–669|arxiv=1110.3234|doi=10.1103/RevModPhys.84.621|bibcode=2012RvMP...84..621W|s2cid=119250535 }}</ref> In turn, the Bloch-Messiah decomposition ({{EquationNote|2}}) means that such an arbitrary Gaussian transformation can be represented as a set of two passive [[Linear optics|linear-optical]] interferometers (corresponding to orthogonal matrices ''O'' and ''O' '') intermitted by a layer of active non-linear [[Squeezed coherent state#Operator representation|squeezing]] transformations (given in terms of the matrix ''D'').<ref>{{Cite journal|last=Braunstein|first=Samuel L.|title=Squeezing as an irreducible resource|date=2005|journal=Physical Review A|volume=71|issue=5|pages=055801|doi=10.1103/PhysRevA.71.055801|arxiv=quant-ph/9904002|bibcode=2005PhRvA..71e5801B|s2cid=16714223 }}</ref> In fact, one can circumvent the need for such ''in-line'' active squeezing transformations if [[Squeezed coherent state|two-mode squeezed vacuum states]] are available as a prior resource only.<ref>{{cite journal|last1=Chakhmakhchyan|first1=Levon|last2=Cerf|first2=Nicolas|title= Simulating arbitrary Gaussian circuits with linear optics|journal=Physical Review A|date=2018|volume=98|issue=6|page=062314|doi=10.1103/PhysRevA.98.062314|arxiv=1803.11534|bibcode=2018PhRvA..98f2314C|s2cid=119227039 }}</ref> ==See also== {{Portal|Mathematics}} * [[Symplectic vector space]] * [[Symplectic group]] * [[Symplectic representation]] * [[Orthogonal matrix]] * [[Unitary matrix]] * [[Hamiltonian mechanics]] * [[Linear complex structure]] * [[Williamson theorem]] ==References== {{reflist}} {{Matrix classes}} [[Category:Matrices (mathematics)]] [[Category:Symplectic geometry]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Bullet list
(
edit
)
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite report
(
edit
)
Template:Cite web
(
edit
)
Template:EquationNote
(
edit
)
Template:EquationRef
(
edit
)
Template:Matrix classes
(
edit
)
Template:Nowrap
(
edit
)
Template:NumBlk
(
edit
)
Template:Portal
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)