Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Syntactic monoid
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Smallest monoid that recognizes a formal language}} In [[mathematics]] and [[computer science]], the '''syntactic monoid''' <math>M(L)</math> of a [[formal language]] <math>L</math> is the minimal [[monoid]] that [[recognizable set|recognizes]] the language <math>L</math>. By the [[Myhill–Nerode theorem]], the syntactic monoid is unique up to unique isomorphism. ==Syntactic quotient== An [[Alphabet (formal languages)|'''alphabet''']] is a finite [[Set (mathematics)|set]]. The [[free monoid|'''free monoid''']] on a given alphabet is the monoid whose elements are all the [[string (computer science)|strings]] of zero or more elements from that set, with [[string concatenation]] as the monoid operation and the [[empty string]] as the [[identity element]]. Given a [[subset]] <math>S</math> of a free monoid <math>M</math>, one may define sets that consist of formal left or right [[Inverse element#In a unital magma|'''inverses''' of elements]] in <math>S</math>. These are called [[Quotient of a formal language|quotients]], and one may define right or left quotients, depending on which side one is concatenating. Thus, the '''right quotient''' of <math>S</math> by an element <math>m</math> from <math>M</math> is the set :<math>S \ / \ m=\{u\in M \;\vert\; um\in S \}.</math> Similarly, the '''left quotient''' is :<math>m \setminus S=\{u\in M \;\vert\; mu\in S \}.</math> ==Syntactic equivalence== The syntactic quotient induces an [[equivalence relation]] on <math>M</math>, called the '''syntactic relation''', or '''syntactic equivalence''' (induced by <math>S</math>). The '''right syntactic equivalence''' is the equivalence relation :<math>s \sim_S t \ \Leftrightarrow\ S \,/ \,s \;=\; S \,/ \,t \ \Leftrightarrow\ (\forall x\in M\colon\ xs \in S \Leftrightarrow xt \in S)</math>. Similarly, the '''left syntactic equivalence''' is :<math>s \;{}_S{\sim}\; t \ \Leftrightarrow\ s \setminus S \;=\; t \setminus S \ \Leftrightarrow\ (\forall y\in M\colon\ sy \in S \Leftrightarrow ty \in S)</math>. Observe that the ''right'' syntactic equivalence is a ''left'' [[congruence relation|congruence]] with respect to [[string concatenation]] and vice versa; i.e., <math>s \sim_S t \ \Rightarrow\ xs \sim_S xt\ </math> for all <math>x \in M</math>. The '''syntactic congruence''' or '''[[John Myhill|Myhill]] congruence'''<ref name=Hol160>Holcombe (1982) p.160</ref> is defined as<ref name=Law210>Lawson (2004) p.210</ref> :<math>s \equiv_S t \ \Leftrightarrow\ (\forall x, y\in M\colon\ xsy \in S \Leftrightarrow xty \in S)</math>. The definition extends to a congruence defined by a subset <math>S</math> of a general monoid <math>M</math>. A '''disjunctive set''' is a subset <math>S</math> such that the syntactic congruence defined by <math>S</math> is the equality relation.<ref name=Law232>Lawson (2004) p.232</ref> Let us call <math>[s]_S</math> the equivalence class of <math>s</math> for the syntactic congruence. The syntactic congruence is [[Quotient (universal algebra)|compatible]] with concatenation in the monoid, in that one has :<math>[s]_S[t]_S=[st]_S</math> for all <math>s,t\in M</math>. Thus, the syntactic quotient is a [[monoid morphism]], and induces a [[quotient monoid]] :<math>M(S)= M \ / \ {\equiv_S}</math>. This monoid <math>M(S)</math> is called the '''syntactic monoid''' of <math>S</math>. It can be shown that it is the smallest [[monoid]] that [[recognizable set|recognizes]] <math>S</math>; that is, <math>M(S)</math> recognizes <math>S</math>, and for every monoid <math>N</math> recognizing <math>S</math>, <math>M(S)</math> is a quotient of a [[submonoid]] of <math>N</math>. The syntactic monoid of <math>S</math> is also the [[transition monoid]] of the [[minimal automaton]] of <math>S</math>.<ref name=Hol160/><ref name=Law210/><ref name=S55>Straubing (1994) p.55</ref> A '''group language''' is one for which the syntactic monoid is a [[Group (mathematics)|group]].<ref name=Sak342>Sakarovitch (2009) p.342</ref> ==Examples== * Let <math>L</math> be the language over <math>A = \{a, b\}</math> of words of even length. The syntactic congruence has two classes, <math>L</math> itself and <math>L_1</math>, the words of odd length. The syntactic monoid is the group of order 2 on <math>\{L, L_1\}</math>.<ref name=S54>Straubing (1994) p.54</ref> * For the language <math>(ab+ba)^*</math>, the minimal automaton has 4 states and the syntactic monoid has 15 elements.<ref name=Law211>Lawson (2004) pp.211-212</ref> * The [[bicyclic monoid]] is the syntactic monoid of the [[Dyck language]] (the language of balanced sets of parentheses). * The [[free monoid]] on <math>A</math> (where <math>\left|A\right| > 1</math>) is the syntactic monoid of the language <math>\{ww^R \mid w \in A^*\}</math>, where <math>w^R</math> is the reversal of the word <math>w</math>. (For <math>\left|A\right| = 1</math>, one can use the language of square powers of the letter.) * Every non-trivial finite monoid is homomorphic{{clarify|Which way does the homorphism go? Is it onto?|date=June 2016}} to the syntactic monoid of some non-trivial language,<ref name=MP48>{{cite book | last1=McNaughton | first1=Robert | last2=Papert | first2=Seymour | author2-link=Seymour Papert | others=With an appendix by William Henneman | series=Research Monograph | volume=65 | year=1971 | title=Counter-free Automata | publisher=MIT Press | isbn=0-262-13076-9 | zbl=0232.94024 | page=[https://archive.org/details/CounterFre_00_McNa/page/48 48] | url-access=registration | url=https://archive.org/details/CounterFre_00_McNa/page/48 }}</ref> but not every finite monoid is isomorphic to a syntactic monoid.<ref name=Law233>Lawson (2004) p.233</ref> * Every [[finite group]] is isomorphic to the syntactic monoid of some regular language.<ref name=MP48/> * The language over <math>\{a, b\}</math> in which the number of occurrences of <math>a</math> and <math>b</math> are congruent modulo <math>2^n</math> is a group language with syntactic monoid <math>\mathbb{Z} / 2^n\mathbb{Z}</math>.<ref name=Sak342/> * [[Trace monoid]]s are examples of syntactic monoids. * [[Marcel-Paul Schützenberger]]<ref>{{cite journal | author=Marcel-Paul Schützenberger | author-link=Marcel-Paul Schützenberger | title=On finite monoids having only trivial subgroups | journal=Information and Computation| year=1965| volume=8 | issue=2 | pages=190–194|url=http://igm.univ-mlv.fr/~berstel/Mps/Travaux/A/1965-4TrivialSubgroupsIC.pdf | doi=10.1016/s0019-9958(65)90108-7| doi-access=free }}</ref> characterized [[star-free language]]s as those with finite [[Aperiodic monoid|aperiodic]] syntactic monoids.<ref name=S60>Straubing (1994) p.60</ref> ==References== {{Reflist}} * {{cite book | last=Anderson | first=James A. | title=Automata theory with modern applications | others=With contributions by Tom Head | location=Cambridge | publisher=[[Cambridge University Press]] | year=2006 | isbn=0-521-61324-8 | zbl=1127.68049 }} * {{cite book | last=Holcombe | first=W.M.L. | title=Algebraic automata theory | zbl=0489.68046 | series=Cambridge Studies in Advanced Mathematics | volume=1 | publisher=[[Cambridge University Press]] | year=1982 | isbn=0-521-60492-3 }} * {{cite book | last=Lawson | first=Mark V. | title=Finite automata | publisher=Chapman and Hall/CRC | year=2004 | isbn=1-58488-255-7 | zbl=1086.68074 }} * {{cite book | editor1-last=Rozenberg | editor1-first=G. | editor2-last=Salomaa | editor2-first=A. | first=Jean-Éric | last=Pin |author-link = Jean-Éric Pin| url=http://www.liafa.jussieu.fr/~jep/PDF/HandBook.pdf | chapter=10. Syntactic semigroups | title=Handbook of Formal Language Theory | volume=1 | publisher=[[Springer-Verlag]] | year=1997 | pages=679–746 | zbl=0866.68057 }} * {{cite book | last=Sakarovitch | first=Jacques | title=Elements of automata theory | others=Translated from the French by Reuben Thomas | publisher=[[Cambridge University Press]] | year=2009 | isbn=978-0-521-84425-3 | zbl=1188.68177 }} * {{cite book | last=Straubing | first=Howard | title=Finite automata, formal logic, and circuit complexity | url=https://archive.org/details/finiteautomatafo0000stra | url-access=registration | series=Progress in Theoretical Computer Science | location=Basel | publisher=Birkhäuser | year=1994 | isbn=3-7643-3719-2 | zbl=0816.68086 }} [[Category:Formal languages]] [[Category:Semigroup theory]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Clarify
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)