Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Table of Lie groups
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Lie groups and their associated Lie algebras}} {{Lie groups}} This article gives a table of some common [[Lie group]]s and their associated [[Lie algebra]]s. The following are noted: the [[Topology|topological]] properties of the group ([[dimension]]; [[Connected space|connectedness]]; [[Compact space|compactness]]; the nature of the [[fundamental group]]; and whether or not they are [[simply connected]]) as well as on their algebraic properties ([[Abelian group|abelian]]; [[Simple Lie group|simple]]; [[Semisimple Lie group|semisimple]]). For more examples of Lie groups and other related topics see the [[list of simple Lie groups]]; the [[Bianchi classification]] of groups of up to three dimensions; see [[classification of low-dimensional real Lie algebras]] for up to four dimensions; and the [[list of Lie group topics]]. == Real Lie groups and their algebras == Column legend * '''Cpt''': Is this group ''G'' [[Compact space|compact]]? (Yes or No) * '''<math>\pi_0</math>''': Gives the [[group of components]] of ''G''. The order of the component group gives the number of [[connected space|connected components]]. The group is [[connected space|connected]] if and only if the component group is [[trivial group|trivial]] (denoted by 0). * '''<math>\pi_1</math>''': Gives the [[fundamental group]] of ''G'' whenever ''G'' is connected. The group is [[simply connected]] if and only if the fundamental group is [[trivial group|trivial]] (denoted by 0). * '''UC''': If ''G'' is not simply connected, gives the [[universal cover]] of ''G''. {{clr}} {| class="wikitable" |- style="background-color:#eee" ! Lie group ! Description ! Cpt ! <math>\pi_0</math> ! <math>\pi_1</math> ! UC ! Remarks ! Lie algebra ! dim/'''R''' |- | align=center | '''R'''<sup>''n''</sup> | [[Euclidean space]] with addition | N | 0 | 0 | | abelian | align=center | '''R'''<sup>''n''</sup> | align=center | ''n'' |- | align=center | '''R'''<sup>×</sup> | nonzero [[real number]]s with multiplication | N | '''Z'''<sub>2</sub> | – | | abelian | align=center | '''R''' | align=center | 1 |- | align=center | '''R'''<sup>+</sup> | [[positive real numbers]] with multiplication | N | 0 | 0 | | abelian | align=center | '''R''' | align=center | 1 |- | align=center | ''S''<sup>1</sup> = U(1) | the [[circle group]]: [[complex number]]s of absolute value 1 with multiplication; | Y | 0 | '''Z''' | '''R''' | abelian, isomorphic to SO(2), Spin(2), and '''R'''/'''Z''' | align=center | '''R''' | align=center | 1 |- | align=center | [[Affine group|Aff(1)]] | invertible [[affine transformation]]s from '''R''' to '''R'''. | N | '''Z'''<sub>2</sub> | – | | [[solvable group|solvable]], [[semidirect product]] of '''R'''<sup>+</sup> and '''R'''<sup>×</sup> | align=center | <math>\left\{\left[\begin{smallmatrix}a & b \\ 0 & 1\end{smallmatrix}\right] : a\in \R^*,b \in \mathbb{R}\right\}</math> | align=center | 2 |- | align=center | '''H'''<sup>×</sup> | non-zero [[quaternions]] with multiplication | N | 0 | 0 | | | align=center | '''H''' | align=center | 4 |- | align=center | ''S''<sup>3</sup> = Sp(1) | [[quaternions]] of [[absolute value]] 1 with multiplication; topologically a [[3-sphere]] | Y | 0 | 0 | | isomorphic to [[SU(2)]] and to [[Spin(3)]]; [[Double covering group|double cover]] of [[SO(3)]] | align=center | Im('''H''') | align=center | 3 |- | align=center | GL(''n'','''R''') | [[general linear group]]: [[invertible matrix|invertible]] ''n''×''n'' real [[matrix (mathematics)|matrices]] | N | '''Z'''<sub>2</sub> | – | | | align=center | M(''n'','''R''') | align=center | ''n''<sup>2</sup> |- | align=center | GL<sup>+</sup>(''n'','''R''') | ''n''×''n'' real matrices with positive [[determinant]] | N | 0 | '''Z''' ''n''=2<br>'''Z'''<sub>2</sub> ''n''>2 | | GL<sup>+</sup>(1,'''R''') is isomorphic to '''R'''<sup>+</sup> and is simply connected | align=center | M(''n'','''R''') | align=center | ''n''<sup>2</sup> |- | align=center | SL(''n'','''R''') | [[special linear group]]: real matrices with [[determinant]] 1 | N | 0 | '''Z''' ''n''=2<br>'''Z'''<sub>2</sub> ''n''>2 | | SL(1,'''R''') is a single point and therefore compact and simply connected | align=center | sl(''n'','''R''') | align=center | ''n''<sup>2</sup>−1 |- | align=center | [[SL2(R)|SL(2,'''R''')]] | Orientation-preserving isometries of the [[Poincaré half-plane]], isomorphic to SU(1,1), isomorphic to Sp(2,'''R'''). | N | 0 | '''Z''' | | The [[universal cover]] has no finite-dimensional faithful representations. | align=center | sl(2,'''R''') | align=center | 3 |- | align=center | O(''n'') | [[orthogonal group]]: real [[orthogonal matrix|orthogonal matrices]] | Y | '''Z'''<sub>2</sub> | – | | The symmetry group of the [[sphere]] (''n''=3) or [[hypersphere]]. | align=center | so(''n'') | align=center | ''n''(''n''−1)/2 |- | align=center | SO(''n'') | [[special orthogonal group]]: real orthogonal matrices with determinant 1 | Y | 0 | '''Z''' ''n''=2<br>'''Z'''<sub>2</sub> ''n''>2 | Spin(''n'')<br>''n''>2 | SO(1) is a single point and SO(2) is isomorphic to the [[circle group]], SO(3) is the rotation group of the sphere. | align=center | so(''n'') | align=center | ''n''(''n''−1)/2 |- | align=center | SE(''n'') | special [[euclidean group]]: group of rigid body motions in n-dimensional space. | N | 0 | | | | align=center | se(''n'') | align=center | ''n'' + ''n''(''n''−1)/2 |- | align=center | Spin(''n'') | [[spin group]]: [[Double covering group|double cover]] of SO(''n'') | Y | 0 ''n''>1 | 0 ''n''>2 | | Spin(1) is isomorphic to '''Z'''<sub>2</sub> and not connected; Spin(2) is isomorphic to the circle group and not simply connected | align=center | so(''n'') | align=center | ''n''(''n''−1)/2 |- | align=center | Sp(2''n'','''R''') | [[symplectic group]]: real [[symplectic matrix|symplectic matrices]] | N | 0 | '''Z''' | | | align=center | sp(2''n'','''R''') | align=center | ''n''(2''n''+1) |- | align=center | Sp(''n'') | [[compact symplectic group]]: quaternionic ''n''×''n'' [[unitary matrix|unitary matrices]] | Y | 0 | 0 | | | align=center | sp(''n'') | align=center | ''n''(2''n''+1) |- | align=center | Mp(''2n'','''R''') | [[metaplectic group]]: double cover of [[symplectic group|real symplectic group]] Sp(''2n'','''R''') | Y | 0 | '''Z''' | | Mp(2,'''R''') is a Lie group that is not [[algebraic group|algebraic]] | align=center | sp(''2n'','''R''') | align=center | ''n''(2''n''+1) |- | align=center | U(''n'') | [[unitary group]]: [[complex number|complex]] ''n''×''n'' [[unitary matrix|unitary matrices]] | Y | 0 | '''Z''' | '''R'''×SU(''n'') | For ''n''=1: isomorphic to S<sup>1</sup>. Note: this is ''not'' a complex Lie group/algebra | align=center | u(''n'') | align=center | ''n''<sup>2</sup> |- | align=center | SU(''n'') | [[special unitary group]]: [[complex number|complex]] ''n''×''n'' [[unitary matrix|unitary matrices]] with determinant 1 | Y | 0 | 0 | | Note: this is ''not'' a complex Lie group/algebra | align=center | su(''n'') | align=center | ''n''<sup>2</sup>−1 |- |} ==Real Lie algebras== {{Main|Classification of low-dimensional real Lie algebras}} {| class="wikitable" |- style="background-color:#eee" ! Lie algebra ! Description ! Simple? ! [[Semisimple Lie algebra|Semi-simple]]? ! Remarks ! dim/'''R''' |- | align=center | '''R''' | the [[real number]]s, the Lie bracket is zero | | | | align=center | 1 |- | align=center | '''R'''<sup>''n''</sup> | the Lie bracket is zero | | | | align=center | ''n'' |- | align=center | '''R'''<sup>''3''</sup> | the Lie bracket is the [[cross product]] | {{Yes}} | {{Yes}} | | align=center | ''3'' |- | align=center | '''H''' | [[quaternions]], with Lie bracket the commutator | | | | align=center | 4 |- | align=center | Im('''H''') | quaternions with zero real part, with Lie bracket the commutator; isomorphic to real 3-vectors, with Lie bracket the [[cross product]]; also isomorphic to su(2) and to so(3,'''R''') | {{Yes}} | {{Yes}} | | align=center | 3 |- | align=center | M(''n'','''R''') | ''n''×''n'' matrices, with Lie bracket the commutator | | | | align=center | ''n''<sup>2</sup> |- | align=center | sl(''n'','''R''') | square matrices with [[trace of a matrix|trace]] 0, with Lie bracket the commutator | {{Yes}} | {{Yes}} | | align=center | ''n''<sup>2</sup>−1 |- | align=center | so(''n'') | [[skew-symmetric matrix|skew-symmetric]] square real matrices, with Lie bracket the commutator. | {{Yes}}, except ''n''=4 | {{Yes}} | Exception: so(4) is semi-simple, but ''not'' simple. | align=center | ''n''(''n''−1)/2 |- | align=center | sp(2''n'','''R''') | real matrices that satisfy ''JA'' + ''A''<sup>T</sup>''J'' = 0 where ''J'' is the standard [[skew-symmetric matrix]] | {{Yes}} | {{Yes}} | | align=center | ''n''(2''n''+1) |- | align=center | sp(''n'') | square quaternionic matrices ''A'' satisfying ''A'' = −''A''<sup>∗</sup>, with Lie bracket the commutator | {{Yes}} | {{Yes}} | | align=center | ''n''(2''n''+1) |- | align=center | u(''n'') | square complex matrices ''A'' satisfying ''A'' = −''A''<sup>∗</sup>, with Lie bracket the commutator | | | Note: this is ''not'' a complex Lie algebra | align=center | ''n''<sup>2</sup> |- | align=center | su(''n'') <br>''n''≥2 | square complex matrices ''A'' with trace 0 satisfying ''A'' = −''A''<sup>∗</sup>, with Lie bracket the commutator | {{Yes}} | {{Yes}} | Note: this is ''not'' a complex Lie algebra | align=center | ''n''<sup>2</sup>−1 |- |} == Complex Lie groups and their algebras == {{main|Complex Lie group}} Note that a "complex Lie group" is defined as a complex analytic manifold that is also a group whose multiplication and inversion are each given by a holomorphic map. The dimensions in the table below are dimensions over '''C'''. Note that every complex Lie group/algebra can also be viewed as a real Lie group/algebra of twice the dimension. {| class="wikitable" |- style="background-color:#eee" ! Lie group ! Description ! Cpt ! <math>\pi_0</math> ! <math>\pi_1</math> ! UC ! Remarks ! Lie algebra ! dim/'''C''' |- | align="center" | '''C'''<sup>''n''</sup> | group operation is addition | N | 0 | 0 | | abelian | align="center" | '''C'''<sup>''n''</sup> | align="center" | ''n'' |- | align="center" | '''C'''<sup>×</sup> | nonzero [[complex number]]s with multiplication | N | 0 | '''Z''' | | abelian | align="center" | '''C''' | align="center" | 1 |- | align="center" | GL(''n'','''C''') | [[general linear group]]: [[invertible matrix|invertible]] ''n''×''n'' complex [[Matrix (mathematics)|matrices]] | N | 0 | '''Z''' | | For ''n''=1: isomorphic to '''C'''<sup>×</sup> | align="center" | M(''n'','''C''') | align="center" | ''n''<sup>2</sup> |- | align="center" | SL(''n'','''C''') | [[special linear group]]: complex matrices with [[determinant]] 1 | N | 0 | 0 | | for ''n''=1 this is a single point and thus compact. | align="center" | sl(''n'','''C''') | align="center" | ''n''<sup>2</sup>−1 |- | align="center" | SL(2,'''C''') | Special case of SL(''n'','''C''') for ''n''=2 | N | 0 | 0 | | Isomorphic to Spin(3,'''C'''), isomorphic to Sp(2,'''C''') | align="center" | sl(2,'''C''') | align="center" | 3 |- | align="center" | PSL(2,'''C''') | Projective special linear group | N | 0 | '''Z'''<sub>2</sub> | SL(2,'''C''') | Isomorphic to the [[Möbius group]], isomorphic to the restricted [[Lorentz group]] SO<sup>+</sup>(3,1,'''R'''), isomorphic to SO(3,'''C'''). | align="center" | sl(2,'''C''') | align="center" | 3 |- | align="center" | O(''n'','''C''') | [[orthogonal group]]: complex [[orthogonal matrix|orthogonal matrices]] | N | '''Z'''<sub>2</sub> | – | | finite for ''n''=1 | align="center" | so(''n'','''C''') | align="center" | ''n''(''n''−1)/2 |- | align="center" | SO(''n'','''C''') | [[special orthogonal group]]: complex orthogonal matrices with determinant 1 | N | 0 | '''Z''' ''n''=2<br>'''Z'''<sub>2</sub> ''n''>2 | | SO(2,'''C''') is abelian and isomorphic to '''C'''<sup>×</sup>; nonabelian for ''n''>2. SO(1,'''C''') is a single point and thus compact and simply connected | align="center" | so(''n'','''C''') | align="center" | ''n''(''n''−1)/2 |- | align="center" | Sp(2''n'','''C''') | [[symplectic group]]: complex [[symplectic matrix|symplectic matrices]] | N | 0 | 0 | | | align="center" | sp(2''n'','''C''') | align="center" | ''n''(2''n''+1) |- |} == Complex Lie algebras == {{main|Complex Lie algebra}} The dimensions given are dimensions over '''C'''. Note that every complex Lie algebra can also be viewed as a real Lie algebra of twice the dimension. {| class="wikitable" |- style="background-color:#eee" ! Lie algebra ! Description ! Simple? ! Semi-simple? ! Remarks ! dim/'''C''' |- | align="center" | '''C''' | the [[complex number]]s | | | | align="center" | 1 |- | align="center" | '''C'''<sup>''n''</sup> | the Lie bracket is zero | | | | align="center" | ''n'' |- | align="center" | M(''n'','''C''') | ''n''×''n'' matrices with Lie bracket the commutator | | | | align="center" | ''n''<sup>2</sup> |- | align="center" | sl(''n'','''C''') | square matrices with [[trace of a matrix|trace]] 0 with Lie bracket the commutator | {{Yes}} | {{Yes}} | | align="center" | ''n''<sup>2</sup>−1 |- | align="center" | sl(2,'''C''') | Special case of sl(''n'','''C''') with ''n''=2 | {{Yes}} | {{Yes}} | isomorphic to su(2) <math>\otimes</math> '''C''' | align="center" | 3 |- | align="center" | so(''n'','''C''') | [[skew-symmetric matrix|skew-symmetric]] square complex matrices with Lie bracket the commutator | {{Yes}}, except ''n''=4 | {{Yes}} | Exception: so(4,'''C''') is semi-simple, but ''not'' simple. | align="center" | ''n''(''n''−1)/2 |- | align="center" | sp(2''n'','''C''') | complex matrices that satisfy ''JA'' + ''A''<sup>T</sup>''J'' = 0 where ''J'' is the standard [[skew-symmetric matrix]] | {{Yes}} | {{Yes}} | | align="center" | ''n''(2''n''+1) |- |} The Lie algebra of affine transformations of dimension two, in fact, exist for any field. An instance has already been listed in the first table for real Lie algebras. == See also == * [[Classification of low-dimensional real Lie algebras]] * [[Simple Lie group#Full classification]] ==References== * {{Fulton-Harris}} [[Category:Lie groups]] [[Category:Lie algebras]] [[Category:Mathematics-related lists|Lie groups]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Clear
(
edit
)
Template:Clr
(
edit
)
Template:Fulton-Harris
(
edit
)
Template:Lie groups
(
edit
)
Template:Main
(
edit
)
Template:Short description
(
edit
)
Template:Yes
(
edit
)