Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Table of prime factors
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{pp-sock|small=yes}} {{Short description|none}} The tables contain the [[Integer factorization|prime factorization]] of the [[natural numbers]] from 1 to 1000. When ''n'' is a [[prime number]], the prime factorization is just ''n'' itself, written in '''bold''' below. The number [[1 (number)|1]] is called a [[Unit (ring theory)|unit]]. It has no prime factors and is neither prime nor [[Composite number|composite]]. == Properties == Many properties of a natural number ''n'' can be seen or directly computed from the prime factorization of ''n''. *The '''multiplicity''' of a prime factor ''p'' of ''n'' is the largest exponent ''m'' for which ''p<sup>m</sup>'' divides ''n''. The tables show the multiplicity for each prime factor. If no exponent is written then the multiplicity is 1 (since ''p'' = ''p''<sup>1</sup>). The multiplicity of a prime which does not divide ''n'' may be called 0 or may be considered undefined. *ฮฉ(''n''), the [[prime omega function]], is the number of prime factors of ''n'' counted with multiplicity (so it is the sum of all prime factor multiplicities). *A [[prime number]] has ฮฉ(''n'') = 1. The first: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37 {{OEIS|id=A000040}}. There are many special [[List of prime numbers|types of prime numbers]]. *A [[composite number]] has ฮฉ(''n'') > 1. The first: 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21 {{OEIS|id=A002808}}. All numbers above 1 are either prime or composite. 1 is neither. *A [[semiprime]] has ฮฉ(''n'') = 2 (so it is composite). The first: 4, 6, 9, 10, 14, 15, 21, 22, 25, 26, 33, 34 {{OEIS|id=A001358}}. *A ''k''-[[almost prime]] (for a natural number ''k'') has ฮฉ(''n'') = ''k'' (so it is composite if ''k'' > 1). *An [[even number]] has the prime factor 2. The first: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24 {{OEIS|id=A005843}}. *An [[odd number]] does not have the prime factor 2. The first: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23 {{OEIS|id=A005408}}. All integers are either even or odd. *A [[Square number|square]] has even multiplicity for all prime factors (it is of the form ''a''<sup>2</sup> for some ''a''). The first: 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144 {{OEIS|id=A000290}}. *A [[Cube (algebra)|cube]] has all multiplicities divisible by 3 (it is of the form ''a''<sup>3</sup> for some ''a''). The first: 1, 8, 27, 64, 125, 216, 343, 512, 729, 1000, 1331, 1728 {{OEIS|id=A000578}}. *A [[perfect power]] has a common divisor ''m'' > 1 for all multiplicities (it is of the form ''a<sup>m</sup>'' for some ''a'' > 1 and ''m'' > 1). The first: 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100 {{OEIS|id=A001597}}. 1 is sometimes included. *A [[powerful number]] (also called '''squareful''') has multiplicity above 1 for all prime factors. The first: 1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 72 {{OEIS|id=A001694}}. *A [[prime power]] has only one prime factor. The first: 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19 {{OEIS|id=A000961}}. 1 is sometimes included. *An [[Achilles number]] is powerful but not a perfect power. The first: 72, 108, 200, 288, 392, 432, 500, 648, 675, 800, 864, 968 {{OEIS|id=A052486}}. *A [[square-free integer]] has no prime factor with multiplicity above 1. The first: 1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17 {{OEIS|id=A005117}}. A number where some but not all prime factors have multiplicity above 1 is neither square-free nor squareful. *The [[Liouville function]] ฮป(''n'') is 1 if ฮฉ(''n'') is even, and is -1 if ฮฉ(''n'') is odd. *The [[Mรถbius function]] ฮผ(''n'') is 0 if ''n'' is not square-free. Otherwise ฮผ(''n'') is 1 if ฮฉ(''n'') is even, and is โ1 if ฮฉ(''n'') is odd. *A [[sphenic number]] has ฮฉ(''n'') = 3 and is square-free (so it is the product of 3 distinct primes). The first: 30, 42, 66, 70, 78, 102, 105, 110, 114, 130, 138, 154 {{OEIS|id=A007304}}. *''a''<sub>0</sub>(''n'') is the sum of primes dividing ''n'', counted with multiplicity. It is an [[additive function]]. *A [[Ruth-Aaron pair]] is two consecutive numbers (''x'', ''x''+1) with ''a''<sub>0</sub>(''x'') = ''a''<sub>0</sub>(''x''+1). The first (by ''x'' value): 5, 8, 15, 77, 125, 714, 948, 1330, 1520, 1862, 2491, 3248 {{OEIS|id=A039752}}. Another definition is where the same prime is only counted once; if so, the first (by ''x'' value): 5, 24, 49, 77, 104, 153, 369, 492, 714, 1682, 2107, 2299 {{OEIS|id=A006145}}. *A [[primorial]] ''x''# is the product of all primes from 2 to ''x''. The first: 2, 6, 30, 210, 2310, 30030, 510510, 9699690, 223092870, 6469693230, 200560490130, 7420738134810 {{OEIS|id=A002110}}. 1# = 1 is sometimes included. *A [[factorial]] ''x''! is the product of all numbers from 1 to ''x''. The first: 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001600 {{OEIS|id=A000142}}. 0! = 1 is sometimes included. *A ''k''-[[smooth number]] (for a natural number ''k'') has its prime factors โค ''k'' (so it is also ''j''-smooth for any ''j'' > ''k''). *''m'' is '''smoother''' than ''n'' if the largest prime factor of ''m'' is below the largest of ''n''. *A [[regular number]] has no prime factor above 5 (so it is 5-smooth). The first: 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16 {{OEIS|id=A051037}}. *A ''k''-[[Smooth number#Powersmooth numbers|powersmooth]] number has all ''p''<sup>''m''</sup> โค ''k'' where ''p'' is a prime factor with multiplicity ''m''. *A [[frugal number]] has more digits than the number of digits in its prime factorization (when written like the tables below with multiplicities above 1 as exponents). The first in [[decimal]]: 125, 128, 243, 256, 343, 512, 625, 729, 1024, 1029, 1215, 1250 {{OEIS|id=A046759}}. *An [[equidigital number]] has the same number of digits as its prime factorization. The first in decimal: 1, 2, 3, 5, 7, 10, 11, 13, 14, 15, 16, 17 {{OEIS|id=A046758}}. *An [[extravagant number]] has fewer digits than its prime factorization. The first in decimal: 4, 6, 8, 9, 12, 18, 20, 22, 24, 26, 28, 30 {{OEIS|id=A046760}}. *An '''economical number''' has been defined as a frugal number, but also as a number that is either frugal or equidigital. *gcd(''m'', ''n'') ([[greatest common divisor]] of ''m'' and ''n'') is the product of all prime factors which are both in ''m'' and ''n'' (with the smallest multiplicity for ''m'' and ''n''). *''m'' and ''n'' are [[coprime]] (also called relatively prime) if gcd(''m'', ''n'') = 1 (meaning they have no common prime factor). *lcm(''m'', ''n'') ([[least common multiple]] of ''m'' and ''n'') is the product of all prime factors of ''m'' or ''n'' (with the largest multiplicity for ''m'' or ''n''). *gcd(''m'', ''n'') ร lcm(''m'', ''n'') = ''m'' ร ''n''. Finding the prime factors is often harder than computing gcd and lcm using other algorithms which do not require known prime factorization. *''m'' is a [[divisor]] of ''n'' (also called ''m'' divides ''n'', or ''n'' is divisible by ''m'') if all prime factors of ''m'' have at least the same multiplicity in ''n''. The divisors of ''n'' are all products of some or all prime factors of ''n'' (including the empty product 1 of no prime factors). The number of divisors can be computed by increasing all multiplicities by 1 and then multiplying them. Divisors and properties related to divisors are shown in [[table of divisors]]. == 1 to 100 == {| border="0" cellpadding="3" cellspacing="0" | {| class="wikitable" |+ 1โ20 |- |[[1 (number)|1]]|| <!-- Please do not put a 1 in this box. This box is supposed to be empty, as 1 is not prime. --> |- |[[2 (number)|2]]||'''2''' |- |[[3 (number)|3]]||'''3''' |- |[[4 (number)|4]]||2<sup>2</sup> |- |[[5 (number)|5]]||'''5''' |- |[[6 (number)|6]]||2ยท3 |- |[[7 (number)|7]]||'''7''' |- |[[8 (number)|8]]||2<sup>3</sup> |- |[[9 (number)|9]]||3<sup>2</sup> |- |[[10 (number)|10]]||2ยท5 |- |[[11 (number)|11]]||'''11''' |- |[[12 (number)|12]]||2<sup>2</sup>ยท3 |- |[[13 (number)|13]]||'''13''' |- |[[14 (number)|14]]||2ยท7 |- |[[15 (number)|15]]||3ยท5 |- |[[16 (number)|16]]||2<sup>4</sup> |- |[[17 (number)|17]]||'''17''' |- |[[18 (number)|18]]||2ยท3<sup>2</sup> |- |[[19 (number)|19]]||'''19''' |- |[[20 (number)|20]]||2<sup>2</sup>ยท5 |} | {| class="wikitable" |+ 21โ40 |- |[[21 (number)|21]]||3ยท7 |- |[[22 (number)|22]]||2ยท11 |- |[[23 (number)|23]]||'''23''' |- |[[24 (number)|24]]||2<sup>3</sup>ยท3 |- |[[25 (number)|25]]||5<sup>2</sup> |- |[[26 (number)|26]]||2ยท13 |- |[[27 (number)|27]]||3<sup>3</sup> |- |[[28 (number)|28]]||2<sup>2</sup>ยท7 |- |[[29 (number)|29]]||'''29''' |- |[[30 (number)|30]]||2ยท3ยท5 |- |[[31 (number)|31]]||'''31''' |- |[[32 (number)|32]]||2<sup>5</sup> |- |[[33 (number)|33]]||3ยท11 |- |[[34 (number)|34]]||2ยท17 |- |[[35 (number)|35]]||5ยท7 |- |[[36 (number)|36]]||2<sup>2</sup>ยท3<sup>2</sup> |- |[[37 (number)|37]]||'''37''' |- |[[38 (number)|38]]||2ยท19 |- |[[39 (number)|39]]||3ยท13 |- |[[40 (number)|40]]||2<sup>3</sup>ยท5 |} | {| class="wikitable" |+ 41โ60 |- |[[41 (number)|41]]||'''41''' |- |[[42 (number)|42]]||2ยท3ยท7 |- |[[43 (number)|43]]||'''43''' |- |[[44 (number)|44]]||2<sup>2</sup>ยท11 |- |[[45 (number)|45]]||3<sup>2</sup>ยท5 |- |[[46 (number)|46]]||2ยท23 |- |[[47 (number)|47]]||'''47''' |- |[[48 (number)|48]]||2<sup>4</sup>ยท3 |- |[[49 (number)|49]]||7<sup>2</sup> |- |[[50 (number)|50]]||2ยท5<sup>2</sup> |- |[[51 (number)|51]]||3ยท17 |- |[[52 (number)|52]]||2<sup>2</sup>ยท13 |- |[[53 (number)|53]]||'''53''' |- |[[54 (number)|54]]||2ยท3<sup>3</sup> |- |[[55 (number)|55]]||5ยท11 |- |[[56 (number)|56]]||2<sup>3</sup>ยท7 |- |[[57 (number)|57]]||3ยท19 |- |[[58 (number)|58]]||2ยท29 |- |[[59 (number)|59]]||'''59''' |- |[[60 (number)|60]]||2<sup>2</sup>ยท3ยท5 |} | {| class="wikitable" |+ 61โ80 |- |[[61 (number)|61]]||'''61''' |- |[[62 (number)|62]]||2ยท31 |- |[[63 (number)|63]]||3<sup>2</sup>ยท7 |- |[[64 (number)|64]]||2<sup>6</sup> |- |[[65 (number)|65]]||5ยท13 |- |[[66 (number)|66]]||2ยท3ยท11 |- |[[67 (number)|67]]||'''67''' |- |[[68 (number)|68]]||2<sup>2</sup>ยท17 |- |[[69 (number)|69]]||3ยท23 |- |[[70 (number)|70]]||2ยท5ยท7 |- |[[71 (number)|71]]||'''71''' |- |[[72 (number)|72]]||2<sup>3</sup>ยท3<sup>2</sup> |- |[[73 (number)|73]]||'''73''' |- |[[74 (number)|74]]||2ยท37 |- |[[75 (number)|75]]||3ยท5<sup>2</sup> |- |[[76 (number)|76]]||2<sup>2</sup>ยท19 |- |[[77 (number)|77]]||7ยท11 |- |[[78 (number)|78]]||2ยท3ยท13 |- |[[79 (number)|79]]||'''79''' |- |[[80 (number)|80]]||2<sup>4</sup>ยท5 |} | {| class="wikitable" |+ 81โ100 |- |[[81 (number)|81]]||3<sup>4</sup> |- |[[82 (number)|82]]||2ยท41 |- |[[83 (number)|83]]||'''83''' |- |[[84 (number)|84]]||2<sup>2</sup>ยท3ยท7 |- |[[85 (number)|85]]||5ยท17 |- |[[86 (number)|86]]||2ยท43 |- |[[87 (number)|87]]||3ยท29 |- |[[88 (number)|88]]||2<sup>3</sup>ยท11 |- |[[89 (number)|89]]||'''89''' |- |[[90 (number)|90]]||2ยท3<sup>2</sup>ยท5 |- |[[91 (number)|91]]||7ยท13 |- |[[92 (number)|92]]||2<sup>2</sup>ยท23 |- |[[93 (number)|93]]||3ยท31 |- |[[94 (number)|94]]||2ยท47 |- |[[95 (number)|95]]||5ยท19 |- |[[96 (number)|96]]||2<sup>5</sup>ยท3 |- |[[97 (number)|97]]||'''97''' |- |[[98 (number)|98]]||2ยท7<sup>2</sup> |- |[[99 (number)|99]]||3<sup>2</sup>ยท11 |- |[[100 (number)|100]]||2<sup>2</sup>ยท5<sup>2</sup> |} |} == 101 to 200 == {| border="0" cellpadding="3" cellspacing="0" | {| class="wikitable" |+ 101โ120 |- |[[101 (number)|101]]||'''101''' |- |[[102 (number)|102]]||2ยท3ยท17 |- |[[103 (number)|103]]||'''103''' |- |[[104 (number)|104]]||2<sup>3</sup>ยท13 |- |[[105 (number)|105]]||3ยท5ยท7 |- |[[106 (number)|106]]||2ยท53 |- |[[107 (number)|107]]||'''107''' |- |[[108 (number)|108]]||2<sup>2</sup>ยท3<sup>3</sup> |- |[[109 (number)|109]]||'''109''' |- |[[110 (number)|110]]||2ยท5ยท11 |- |[[111 (number)|111]]||3ยท37 |- |[[112 (number)|112]]||2<sup>4</sup>ยท7 |- |[[113 (number)|113]]||'''113''' |- |[[114 (number)|114]]||2ยท3ยท19 |- |[[115 (number)|115]]||5ยท23 |- |[[116 (number)|116]]||2<sup>2</sup>ยท29 |- |[[117 (number)|117]]||3<sup>2</sup>ยท13 |- |[[118 (number)|118]]||2ยท59 |- |[[119 (number)|119]]||7ยท17 |- |[[120 (number)|120]]||2<sup>3</sup>ยท3ยท5 |} | {| class="wikitable" |+ 121โ140 |- |[[121 (number)|121]]||11<sup>2</sup> |- |[[122 (number)|122]]||2ยท61 |- |[[123 (number)|123]]||3ยท41 |- |[[124 (number)|124]]||2<sup>2</sup>ยท31 |- |[[125 (number)|125]]||5<sup>3</sup> |- |[[126 (number)|126]]||2ยท3<sup>2</sup>ยท7 |- |[[127 (number)|127]]||'''127''' |- |[[128 (number)|128]]||2<sup>7</sup> |- |[[129 (number)|129]]||3ยท43 |- |[[130 (number)|130]]||2ยท5ยท13 |- |[[131 (number)|131]]||'''131''' |- |[[132 (number)|132]]||2<sup>2</sup>ยท3ยท11 |- |[[133 (number)|133]]||7ยท19 |- |[[134 (number)|134]]||2ยท67 |- |[[135 (number)|135]]||3<sup>3</sup>ยท5 |- |[[136 (number)|136]]||2<sup>3</sup>ยท17 |- |[[137 (number)|137]]||'''137''' |- |[[138 (number)|138]]||2ยท3ยท23 |- |[[139 (number)|139]]||'''139''' |- |[[140 (number)|140]]||2<sup>2</sup>ยท5ยท7 |} | {| class="wikitable" |+ 141โ160 |- |[[141 (number)|141]]||3ยท47 |- |[[142 (number)|142]]||2ยท71 |- |[[143 (number)|143]]||11ยท13 |- |[[144 (number)|144]]||2<sup>4</sup>ยท3<sup>2</sup> |- |[[145 (number)|145]]||5ยท29 |- |[[146 (number)|146]]||2ยท73 |- |[[147 (number)|147]]||3ยท7<sup>2</sup> |- |[[148 (number)|148]]||2<sup>2</sup>ยท37 |- |[[149 (number)|149]]||'''149''' |- |[[150 (number)|150]]||2ยท3ยท5<sup>2</sup> |- |[[151 (number)|151]]||'''151''' |- |[[152 (number)|152]]||2<sup>3</sup>ยท19 |- |[[153 (number)|153]]||3<sup>2</sup>ยท17 |- |[[154 (number)|154]]||2ยท7ยท11 |- |[[155 (number)|155]]||5ยท31 |- |[[156 (number)|156]]||2<sup>2</sup>ยท3ยท13 |- |[[157 (number)|157]]||'''157''' |- |[[158 (number)|158]]||2ยท79 |- |[[159 (number)|159]]||3ยท53 |- |[[160 (number)|160]]||2<sup>5</sup>ยท5 |} | {| class="wikitable" |+ 161โ180 |- |[[161 (number)|161]]||7ยท23 |- |[[162 (number)|162]]||2ยท3<sup>4</sup> |- |[[163 (number)|163]]||'''163''' |- |[[164 (number)|164]]||2<sup>2</sup>ยท41 |- |[[165 (number)|165]]||3ยท5ยท11 |- |[[166 (number)|166]]||2ยท83 |- |[[167 (number)|167]]||'''167''' |- |[[168 (number)|168]]||2<sup>3</sup>ยท3ยท7 |- |[[169 (number)|169]]||13<sup>2</sup> |- |[[170 (number)|170]]||2ยท5ยท17 |- |[[171 (number)|171]]||3<sup>2</sup>ยท19 |- |[[172 (number)|172]]||2<sup>2</sup>ยท43 |- |[[173 (number)|173]]||'''173''' |- |[[174 (number)|174]]||2ยท3ยท29 |- |[[175 (number)|175]]||5<sup>2</sup>ยท7 |- |[[176 (number)|176]]||2<sup>4</sup>ยท11 |- |[[177 (number)|177]]||3ยท59 |- |[[178 (number)|178]]||2ยท89 |- |[[179 (number)|179]]||'''179''' |- |[[180 (number)|180]]||2<sup>2</sup>ยท3<sup>2</sup>ยท5 |} | {| class="wikitable" |+ 181โ200 |- |[[181 (number)|181]]||'''181''' |- |[[182 (number)|182]]||2ยท7ยท13 |- |[[183 (number)|183]]||3ยท61 |- |[[184 (number)|184]]||2<sup>3</sup>ยท23 |- |[[185 (number)|185]]||5ยท37 |- |[[186 (number)|186]]||2ยท3ยท31 |- |[[187 (number)|187]]||11ยท17 |- |[[188 (number)|188]]||2<sup>2</sup>ยท47 |- |[[189 (number)|189]]||3<sup>3</sup>ยท7 |- |[[190 (number)|190]]||2ยท5ยท19 |- |[[191 (number)|191]]||'''191''' |- |[[192 (number)|192]]||2<sup>6</sup>ยท3 |- |[[193 (number)|193]]||'''193''' |- |[[194 (number)|194]]||2ยท97 |- |[[195 (number)|195]]||3ยท5ยท13 |- |[[196 (number)|196]]||2<sup>2</sup>ยท7<sup>2</sup> |- |[[197 (number)|197]]||'''197''' |- |198||2ยท3<sup>2</sup>ยท11 |- |[[199 (number)|199]]||'''199''' |- |[[200 (number)|200]]||2<sup>3</sup>ยท5<sup>2</sup> |} |} == 201 to 300 == {| border="0" cellpadding="3" cellspacing="0" | {| class="wikitable" |+ 201โ220 |- |[[201 (number)|201]]||3ยท67 |- |[[202 (number)|202]]||2ยท101 |- |[[203 (number)|203]]||7ยท29 |- |[[204 (number)|204]]||2<sup>2</sup>ยท3ยท17 |- |[[205 (number)|205]]||5ยท41 |- |[[206 (number)|206]]||2ยท103 |- |[[207 (number)|207]]||3<sup>2</sup>ยท23 |- |[[208 (number)|208]]||2<sup>4</sup>ยท13 |- |[[209 (number)|209]]||11ยท19 |- |[[210 (number)|210]]||2ยท3ยท5ยท7 |- |[[211 (number)|211]]||'''211''' |- |[[212 (number)|212]]||2<sup>2</sup>ยท53 |- |[[213 (number)|213]]||3ยท71 |- |[[214 (number)|214]]||2ยท107 |- |[[215 (number)|215]]||5ยท43 |- |[[216 (number)|216]]||2<sup>3</sup>ยท3<sup>3</sup> |- |[[217 (number)|217]]||7ยท31 |- |[[218 (number)|218]]||2ยท109 |- |[[219 (number)|219]]||3ยท73 |- |[[220 (number)|220]]||2<sup>2</sup>ยท5ยท11 |} | {| class="wikitable" |+ 221โ240 |- |[[221 (number)|221]]||13ยท17 |- |[[222 (number)|222]]||2ยท3ยท37 |- |[[223 (number)|223]]||'''223''' |- |[[224 (number)|224]]||2<sup>5</sup>ยท7 |- |[[225 (number)|225]]||3<sup>2</sup>ยท5<sup>2</sup> |- |[[226 (number)|226]]||2ยท113 |- |[[227 (number)|227]]||'''227''' |- |[[228 (number)|228]]||2<sup>2</sup>ยท3ยท19 |- |[[229 (number)|229]]||'''229''' |- |[[230 (number)|230]]||2ยท5ยท23 |- |[[231 (number)|231]]||3ยท7ยท11 |- |[[232 (number)|232]]||2<sup>3</sup>ยท29 |- |[[233 (number)|233]]||'''233''' |- |[[234 (number)|234]]||2ยท3<sup>2</sup>ยท13 |- |[[235 (number)|235]]||5ยท47 |- |[[236 (number)|236]]||2<sup>2</sup>ยท59 |- |[[237 (number)|237]]||3ยท79 |- |[[238 (number)|238]]||2ยท7ยท17 |- |[[239 (number)|239]]||'''239''' |- |[[240 (number)|240]]||2<sup>4</sup>ยท3ยท5 |} | {| class="wikitable" |+ 241โ260 |- |[[241 (number)|241]]||'''241''' |- |[[242 (number)|242]]||2ยท11<sup>2</sup> |- |[[243 (number)|243]]||3<sup>5</sup> |- |[[244 (number)|244]]||2<sup>2</sup>ยท61 |- |[[245 (number)|245]]||5ยท7<sup>2</sup> |- |[[246 (number)|246]]||2ยท3ยท41 |- |[[247 (number)|247]]||13ยท19 |- |[[248 (number)|248]]||2<sup>3</sup>ยท31 |- |[[249 (number)|249]]||3ยท83 |- |[[250 (number)|250]]||2ยท5<sup>3</sup> |- |[[251 (number)|251]]||'''251''' |- |[[252 (number)|252]]||2<sup>2</sup>ยท3<sup>2</sup>ยท7 |- |[[253 (number)|253]]||11ยท23 |- |[[254 (number)|254]]||2ยท127 |- |[[255 (number)|255]]||3ยท5ยท17 |- |[[256 (number)|256]]||2<sup>8</sup> |- |[[257 (number)|257]]||'''257''' |- |[[258 (number)|258]]||2ยท3ยท43 |- |[[259 (number)|259]]||7ยท37 |- |[[260 (number)|260]]||2<sup>2</sup>ยท5ยท13 |} | {| class="wikitable" |+ 261โ280 |- |[[261 (number)|261]]||3<sup>2</sup>ยท29 |- |[[262 (number)|262]]||2ยท131 |- |[[263 (number)|263]]||'''263''' |- |[[264 (number)|264]]||2<sup>3</sup>ยท3ยท11 |- |[[265 (number)|265]]||5ยท53 |- |[[266 (number)|266]]||2ยท7ยท19 |- |[[267 (number)|267]]||3ยท89 |- |[[268 (number)|268]]||2<sup>2</sup>ยท67 |- |[[269 (number)|269]]||'''269''' |- |[[270 (number)|270]]||2ยท3<sup>3</sup>ยท5 |- |[[271 (number)|271]]||'''271''' |- |[[272 (number)|272]]||2<sup>4</sup>ยท17 |- |[[273 (number)|273]]||3ยท7ยท13 |- |[[274 (number)|274]]||2ยท137 |- |[[275 (number)|275]]||5<sup>2</sup>ยท11 |- |[[276 (number)|276]]||2<sup>2</sup>ยท3ยท23 |- |[[277 (number)|277]]||'''277''' |- |[[278 (number)|278]]||2ยท139 |- |[[279 (number)|279]]||3<sup>2</sup>ยท31 |- |[[280 (number)|280]]||2<sup>3</sup>ยท5ยท7 |} | {| class="wikitable" |+ 281โ300 |- |[[281 (number)|281]]||'''281''' |- |[[282 (number)|282]]||2ยท3ยท47 |- |[[283 (number)|283]]||'''283''' |- |[[284 (number)|284]]||2<sup>2</sup>ยท71 |- |[[285 (number)|285]]||3ยท5ยท19 |- |[[286 (number)|286]]||2ยท11ยท13 |- |[[287 (number)|287]]||7ยท41 |- |[[288 (number)|288]]||2<sup>5</sup>ยท3<sup>2</sup> |- |[[289 (number)|289]]||17<sup>2</sup> |- |[[290 (number)|290]]||2ยท5ยท29 |- |[[291 (number)|291]]||3ยท97 |- |[[292 (number)|292]]||2<sup>2</sup>ยท73 |- |[[293 (number)|293]]||'''293''' |- |[[294 (number)|294]]||2ยท3ยท7<sup>2</sup> |- |[[295 (number)|295]]||5ยท59 |- |[[296 (number)|296]]||2<sup>3</sup>ยท37 |- |[[297 (number)|297]]||3<sup>3</sup>ยท11 |- |[[298 (number)|298]]||2ยท149 |- |[[299 (number)|299]]||13ยท23 |- |[[300 (number)|300]]||2<sup>2</sup>ยท3ยท5<sup>2</sup> |} |} == 301 to 400 == {| border="0" cellpadding="3" cellspacing="0" | {| class="wikitable" |+ 301โ320 |- |[[301 (number)|301]]||7ยท43 |- |[[302 (number)|302]]||2ยท151 |- |[[303 (number)|303]]||3ยท101 |- |[[304 (number)|304]]||2<sup>4</sup>ยท19 |- |[[305 (number)|305]]||5ยท61 |- |[[306 (number)|306]]||2ยท3<sup>2</sup>ยท17 |- |[[307 (number)|307]]||'''307''' |- |[[308 (number)|308]]||2<sup>2</sup>ยท7ยท11 |- |[[309 (number)|309]]||3ยท103 |- |[[310 (number)|310]]||2ยท5ยท31 |- |[[311 (number)|311]]||'''311''' |- |[[312 (number)|312]]||2<sup>3</sup>ยท3ยท13 |- |[[313 (number)|313]]||'''313''' |- |[[314 (number)|314]]||2ยท157 |- |[[315 (number)|315]]||3<sup>2</sup>ยท5ยท7 |- |[[316 (number)|316]]||2<sup>2</sup>ยท79 |- |[[317 (number)|317]]||'''317''' |- |[[318 (number)|318]]||2ยท3ยท53 |- |[[319 (number)|319]]||11ยท29 |- |[[320 (number)|320]]||2<sup>6</sup>ยท5 |} | {| class="wikitable" |+ 321โ340 |- |[[321 (number)|321]]||3ยท107 |- |[[322 (number)|322]]||2ยท7ยท23 |- |[[323 (number)|323]]||17ยท19 |- |[[324 (number)|324]]||2<sup>2</sup>ยท3<sup>4</sup> |- |[[325 (number)|325]]||5<sup>2</sup>ยท13 |- |[[326 (number)|326]]||2ยท163 |- |[[327 (number)|327]]||3ยท109 |- |[[328 (number)|328]]||2<sup>3</sup>ยท41 |- |[[329 (number)|329]]||7ยท47 |- |[[330 (number)|330]]||2ยท3ยท5ยท11 |- |[[331 (number)|331]]||'''331''' |- |[[332 (number)|332]]||2<sup>2</sup>ยท83 |- |[[333 (number)|333]]||3<sup>2</sup>ยท37 |- |[[334 (number)|334]]||2ยท167 |- |[[335 (number)|335]]||5ยท67 |- |[[336 (number)|336]]||2<sup>4</sup>ยท3ยท7 |- |[[337 (number)|337]]||'''337''' |- |[[338 (number)|338]]||2ยท13<sup>2</sup> |- |[[339 (number)|339]]||3ยท113 |- |[[340 (number)|340]]||2<sup>2</sup>ยท5ยท17 |} | {| class="wikitable" |+ 341โ360 |- |[[341 (number)|341]]||11ยท31 |- |[[342 (number)|342]]||2ยท3<sup>2</sup>ยท19 |- |[[343 (number)|343]]||7<sup>3</sup> |- |[[344 (number)|344]]||2<sup>3</sup>ยท43 |- |[[345 (number)|345]]||3ยท5ยท23 |- |[[346 (number)|346]]||2ยท173 |- |[[347 (number)|347]]||'''347''' |- |[[348 (number)|348]]||2<sup>2</sup>ยท3ยท29 |- |[[349 (number)|349]]||'''349''' |- |[[350 (number)|350]]||2ยท5<sup>2</sup>ยท7 |- |[[351 (number)|351]]||3<sup>3</sup>ยท13 |- |[[352 (number)|352]]||2<sup>5</sup>ยท11 |- |[[353 (number)|353]]||'''353''' |- |[[354 (number)|354]]||2ยท3ยท59 |- |[[355 (number)|355]]||5ยท71 |- |[[356 (number)|356]]||2<sup>2</sup>ยท89 |- |[[357 (number)|357]]||3ยท7ยท17 |- |[[358 (number)|358]]||2ยท179 |- |[[359 (number)|359]]||'''359''' |- |[[360 (number)|360]]||2<sup>3</sup>ยท3<sup>2</sup>ยท5 |} | {| class="wikitable" |+ 361โ380 |- |[[361 (number)|361]]||19<sup>2</sup> |- |[[362 (number)|362]]||2ยท181 |- |[[363 (number)|363]]||3ยท11<sup>2</sup> |- |[[364 (number)|364]]||2<sup>2</sup>ยท7ยท13 |- |[[365 (number)|365]]||5ยท73 |- |[[366 (number)|366]]||2ยท3ยท61 |- |[[367 (number)|367]]||'''367''' |- |[[368 (number)|368]]||2<sup>4</sup>ยท23 |- |[[369 (number)|369]]||3<sup>2</sup>ยท41 |- |[[370 (number)|370]]||2ยท5ยท37 |- |[[371 (number)|371]]||7ยท53 |- |[[372 (number)|372]]||2<sup>2</sup>ยท3ยท31 |- |[[373 (number)|373]]||'''373''' |- |[[374 (number)|374]]||2ยท11ยท17 |- |[[375 (number)|375]]||3ยท5<sup>3</sup> |- |[[376 (number)|376]]||2<sup>3</sup>ยท47 |- |[[377 (number)|377]]||13ยท29 |- |[[378 (number)|378]]||2ยท3<sup>3</sup>ยท7 |- |[[379 (number)|379]]||'''379''' |- |[[380 (number)|380]]||2<sup>2</sup>ยท5ยท19 |} | {| class="wikitable" |+ 381โ400 |- |[[381 (number)|381]]||3ยท127 |- |[[382 (number)|382]]||2ยท191 |- |[[383 (number)|383]]||'''383''' |- |[[384 (number)|384]]||2<sup>7</sup>ยท3 |- |[[385 (number)|385]]||5ยท7ยท11 |- |[[386 (number)|386]]||2ยท193 |- |[[387 (number)|387]]||3<sup>2</sup>ยท43 |- |[[388 (number)|388]]||2<sup>2</sup>ยท97 |- |[[389 (number)|389]]||'''389''' |- |[[390 (number)|390]]||2ยท3ยท5ยท13 |- |[[391 (number)|391]]||17ยท23 |- |[[392 (number)|392]]||2<sup>3</sup>ยท7<sup>2</sup> |- |[[393 (number)|393]]||3ยท131 |- |[[394 (number)|394]]||2ยท197 |- |[[395 (number)|395]]||5ยท79 |- |[[396 (number)|396]]||2<sup>2</sup>ยท3<sup>2</sup>ยท11 |- |[[397 (number)|397]]||'''397''' |- |[[398 (number)|398]]||2ยท199 |- |[[399 (number)|399]]||3ยท7ยท19 |- |[[400 (number)|400]]||2<sup>4</sup>ยท5<sup>2</sup> |} |} == 401 to 500 == {| border="0" cellpadding="3" cellspacing="0" | {| class="wikitable" |+ 401โ420 |- |[[401 (number)|401]]||'''401''' |- |[[402 (number)|402]]||2ยท3ยท67 |- |[[403 (number)|403]]||13ยท31 |- |[[404 (number)|404]]||2<sup>2</sup>ยท101 |- |[[405 (number)|405]]||3<sup>4</sup>ยท5 |- |[[406 (number)|406]]||2ยท7ยท29 |- |[[407 (number)|407]]||11ยท37 |- |[[408 (number)|408]]||2<sup>3</sup>ยท3ยท17 |- |[[409 (number)|409]]||'''409''' |- |[[410 (number)|410]]||2ยท5ยท41 |- |[[411 (number)|411]]||3ยท137 |- |[[412 (number)|412]]||2<sup>2</sup>ยท103 |- |[[413 (number)|413]]||7ยท59 |- |[[414 (number)|414]]||2ยท3<sup>2</sup>ยท23 |- |[[415 (number)|415]]||5ยท83 |- |[[416 (number)|416]]||2<sup>5</sup>ยท13 |- |[[417 (number)|417]]||3ยท139 |- |[[418 (number)|418]]||2ยท11ยท19 |- |[[419 (number)|419]]||'''419''' |- |[[420 (number)|420]]||2<sup>2</sup>ยท3ยท5ยท7 |} | {| class="wikitable" |+ 421โ440 |- |[[421 (number)|421]]||'''421''' |- |[[422 (number)|422]]||2ยท211 |- |[[423 (number)|423]]||3<sup>2</sup>ยท47 |- |[[424 (number)|424]]||2<sup>3</sup>ยท53 |- |[[425 (number)|425]]||5<sup>2</sup>ยท17 |- |[[426 (number)|426]]||2ยท3ยท71 |- |[[427 (number)|427]]||7ยท61 |- |[[428 (number)|428]]||2<sup>2</sup>ยท107 |- |[[429 (number)|429]]||3ยท11ยท13 |- |[[430 (number)|430]]||2ยท5ยท43 |- |[[431 (number)|431]]||'''431''' |- |[[432 (number)|432]]||2<sup>4</sup>ยท3<sup>3</sup> |- |[[433 (number)|433]]||'''433''' |- |[[434 (number)|434]]||2ยท7ยท31 |- |[[435 (number)|435]]||3ยท5ยท29 |- |[[436 (number)|436]]||2<sup>2</sup>ยท109 |- |[[437 (number)|437]]||19ยท23 |- |[[438 (number)|438]]||2ยท3ยท73 |- |[[439 (number)|439]]||'''439''' |- |[[440 (number)|440]]||2<sup>3</sup>ยท5ยท11 |} | {| class="wikitable" |+ 441โ460 |- |[[441 (number)|441]]||3<sup>2</sup>ยท7<sup>2</sup> |- |[[442 (number)|442]]||2ยท13ยท17 |- |[[443 (number)|443]]||'''443''' |- |[[444 (number)|444]]||2<sup>2</sup>ยท3ยท37 |- |[[445 (number)|445]]||5ยท89 |- |[[446 (number)|446]]||2ยท223 |- |[[447 (number)|447]]||3ยท149 |- |[[448 (number)|448]]||2<sup>6</sup>ยท7 |- |[[449 (number)|449]]||'''449''' |- |[[450 (number)|450]]||2ยท3<sup>2</sup>ยท5<sup>2</sup> |- |[[451 (number)|451]]||11ยท41 |- |[[452 (number)|452]]||2<sup>2</sup>ยท113 |- |[[453 (number)|453]]||3ยท151 |- |[[454 (number)|454]]||2ยท227 |- |[[455 (number)|455]]||5ยท7ยท13 |- |[[456 (number)|456]]||2<sup>3</sup>ยท3ยท19 |- |[[457 (number)|457]]||'''457''' |- |[[458 (number)|458]]||2ยท229 |- |[[459 (number)|459]]||3<sup>3</sup>ยท17 |- |[[460 (number)|460]]||2<sup>2</sup>ยท5ยท23 |} | {| class="wikitable" |+ 461โ480 |- |[[461 (number)|461]]||'''461''' |- |[[462 (number)|462]]||2ยท3ยท7ยท11 |- |[[463 (number)|463]]||'''463''' |- |[[464 (number)|464]]||2<sup>4</sup>ยท29 |- |[[465 (number)|465]]||3ยท5ยท31 |- |[[466 (number)|466]]||2ยท233 |- |[[467 (number)|467]]||'''467''' |- |[[468 (number)|468]]||2<sup>2</sup>ยท3<sup>2</sup>ยท13 |- |[[469 (number)|469]]||7ยท67 |- |[[470 (number)|470]]||2ยท5ยท47 |- |[[471 (number)|471]]||3ยท157 |- |[[472 (number)|472]]||2<sup>3</sup>ยท59 |- |[[473 (number)|473]]||11ยท43 |- |[[474 (number)|474]]||2ยท3ยท79 |- |[[475 (number)|475]]||5<sup>2</sup>ยท19 |- |[[476 (number)|476]]||2<sup>2</sup>ยท7ยท17 |- |[[477 (number)|477]]||3<sup>2</sup>ยท53 |- |[[478 (number)|478]]||2ยท239 |- |[[479 (number)|479]]||'''479''' |- |[[480 (number)|480]]||2<sup>5</sup>ยท3ยท5 |} | {| class="wikitable" |+ 481โ500 |- |[[481 (number)|481]]||13ยท37 |- |[[482 (number)|482]]||2ยท241 |- |[[483 (number)|483]]||3ยท7ยท23 |- |[[484 (number)|484]]||2<sup>2</sup>ยท11<sup>2</sup> |- |[[485 (number)|485]]||5ยท97 |- |[[486 (number)|486]]||2ยท3<sup>5</sup> |- |[[487 (number)|487]]||'''487''' |- |[[488 (number)|488]]||2<sup>3</sup>ยท61 |- |[[489 (number)|489]]||3ยท163 |- |[[490 (number)|490]]||2ยท5ยท7<sup>2</sup> |- |[[491 (number)|491]]||'''491''' |- |[[492 (number)|492]]||2<sup>2</sup>ยท3ยท41 |- |[[493 (number)|493]]||17ยท29 |- |[[494 (number)|494]]||2ยท13ยท19 |- |[[495 (number)|495]]||3<sup>2</sup>ยท5ยท11 |- |[[496 (number)|496]]||2<sup>4</sup>ยท31 |- |[[497 (number)|497]]||7ยท71 |- |[[498 (number)|498]]||2ยท3ยท83 |- |[[499 (number)|499]]||'''499''' |- |[[500 (number)|500]]||2<sup>2</sup>ยท5<sup>3</sup> |} |} == 501 to 600 == {| border="0" cellpadding="3" cellspacing="0" | {| class="wikitable" |+ 501โ520 |- |[[501 (number)|501]]||3ยท167 |- |[[502 (number)|502]]||2ยท251 |- |[[503 (number)|503]]||'''503''' |- |[[504 (number)|504]]||2<sup>3</sup>ยท3<sup>2</sup>ยท7 |- |[[505 (number)|505]]||5ยท101 |- |[[506 (number)|506]]||2ยท11ยท23 |- |[[507 (number)|507]]||3ยท13<sup>2</sup> |- |[[508 (number)|508]]||2<sup>2</sup>ยท127 |- |[[509 (number)|509]]||'''509''' |- |[[510 (number)|510]]||2ยท3ยท5ยท17 |- |[[511 (number)|511]]||7ยท73 |- |[[512 (number)|512]]||2<sup>9</sup> |- |[[513 (number)|513]]||3<sup>3</sup>ยท19 |- |[[514 (number)|514]]||2ยท257 |- |[[515 (number)|515]]||5ยท103 |- |[[516 (number)|516]]||2<sup>2</sup>ยท3ยท43 |- |[[517 (number)|517]]||11ยท47 |- |[[518 (number)|518]]||2ยท7ยท37 |- |[[519 (number)|519]]||3ยท173 |- |[[520 (number)|520]]||2<sup>3</sup>ยท5ยท13 |} | {| class="wikitable" |+ 521โ540 |- |[[521 (number)|521]]||'''521''' |- |[[522 (number)|522]]||2ยท3<sup>2</sup>ยท29 |- |[[523 (number)|523]]||'''523''' |- |[[524 (number)|524]]||2<sup>2</sup>ยท131 |- |[[525 (number)|525]]||3ยท5<sup>2</sup>ยท7 |- |[[526 (number)|526]]||2ยท263 |- |[[527 (number)|527]]||17ยท31 |- |[[528 (number)|528]]||2<sup>4</sup>ยท3ยท11 |- |[[529 (number)|529]]||23<sup>2</sup> |- |[[530 (number)|530]]||2ยท5ยท53 |- |[[531 (number)|531]]||3<sup>2</sup>ยท59 |- |[[532 (number)|532]]||2<sup>2</sup>ยท7ยท19 |- |[[533 (number)|533]]||13ยท41 |- |[[534 (number)|534]]||2ยท3ยท89 |- |[[535 (number)|535]]||5ยท107 |- |[[536 (number)|536]]||2<sup>3</sup>ยท67 |- |[[537 (number)|537]]||3ยท179 |- |[[538 (number)|538]]||2ยท269 |- |[[539 (number)|539]]||7<sup>2</sup>ยท11 |- |[[540 (number)|540]]||2<sup>2</sup>ยท3<sup>3</sup>ยท5 |} | {| class="wikitable" |+ 541โ560 |- |[[541 (number)|541]]||'''541''' |- |[[542 (number)|542]]||2ยท271 |- |[[543 (number)|543]]||3ยท181 |- |[[544 (number)|544]]||2<sup>5</sup>ยท17 |- |[[545 (number)|545]]||5ยท109 |- |[[546 (number)|546]]||2ยท3ยท7ยท13 |- |[[547 (number)|547]]||'''547''' |- |[[548 (number)|548]]||2<sup>2</sup>ยท137 |- |[[549 (number)|549]]||3<sup>2</sup>ยท61 |- |[[550 (number)|550]]||2ยท5<sup>2</sup>ยท11 |- |[[551 (number)|551]]||19ยท29 |- |[[552 (number)|552]]||2<sup>3</sup>ยท3ยท23 |- |[[553 (number)|553]]||7ยท79 |- |[[554 (number)|554]]||2ยท277 |- |[[555 (number)|555]]||3ยท5ยท37 |- |[[556 (number)|556]]||2<sup>2</sup>ยท139 |- |[[557 (number)|557]]||'''557''' |- |[[558 (number)|558]]||2ยท3<sup>2</sup>ยท31 |- |[[559 (number)|559]]||13ยท43 |- |[[560 (number)|560]]||2<sup>4</sup>ยท5ยท7 |} | {| class="wikitable" |+ 561โ580 |- |[[561 (number)|561]]||3ยท11ยท17 |- |[[562 (number)|562]]||2ยท281 |- |[[563 (number)|563]]||'''563''' |- |[[564 (number)|564]]||2<sup>2</sup>ยท3ยท47 |- |[[565 (number)|565]]||5ยท113 |- |[[566 (number)|566]]||2ยท283 |- |[[567 (number)|567]]||3<sup>4</sup>ยท7 |- |[[568 (number)|568]]||2<sup>3</sup>ยท71 |- |[[569 (number)|569]]||'''569''' |- |[[570 (number)|570]]||2ยท3ยท5ยท19 |- |[[571 (number)|571]]||'''571''' |- |[[572 (number)|572]]||2<sup>2</sup>ยท11ยท13 |- |[[573 (number)|573]]||3ยท191 |- |[[574 (number)|574]]||2ยท7ยท41 |- |[[575 (number)|575]]||5<sup>2</sup>ยท23 |- |[[576 (number)|576]]||2<sup>6</sup>ยท3<sup>2</sup> |- |[[577 (number)|577]]||'''577''' |- |[[578 (number)|578]]||2ยท17<sup>2</sup> |- |[[579 (number)|579]]||3ยท193 |- |[[580 (number)|580]]||2<sup>2</sup>ยท5ยท29 |} | {| class="wikitable" |+ 581โ600 |- |[[581 (number)|581]]||7ยท83 |- |[[582 (number)|582]]||2ยท3ยท97 |- |[[583 (number)|583]]||11ยท53 |- |[[584 (number)|584]]||2<sup>3</sup>ยท73 |- |[[585 (number)|585]]||3<sup>2</sup>ยท5ยท13 |- |[[586 (number)|586]]||2ยท293 |- |[[587 (number)|587]]||'''587''' |- |[[588 (number)|588]]||2<sup>2</sup>ยท3ยท7<sup>2</sup> |- |[[589 (number)|589]]||19ยท31 |- |[[590 (number)|590]]||2ยท5ยท59 |- |[[591 (number)|591]]||3ยท197 |- |[[592 (number)|592]]||2<sup>4</sup>ยท37 |- |[[593 (number)|593]]||'''593''' |- |[[594 (number)|594]]||2ยท3<sup>3</sup>ยท11 |- |[[595 (number)|595]]||5ยท7ยท17 |- |[[596 (number)|596]]||2<sup>2</sup>ยท149 |- |[[597 (number)|597]]||3ยท199 |- |[[598 (number)|598]]||2ยท13ยท23 |- |[[599 (number)|599]]||'''599''' |- |[[600 (number)|600]]||2<sup>3</sup>ยท3ยท5<sup>2</sup> |} |} == 601 to 700 == {| border="0" cellpadding="3" cellspacing="0" | {| class="wikitable" |+ 601โ620 |- |[[601 (number)|601]]||'''601''' |- |[[602 (number)|602]]||2ยท7ยท43 |- |[[603 (number)|603]]||3<sup>2</sup>ยท67 |- |[[604 (number)|604]]||2<sup>2</sup>ยท151 |- |[[605 (number)|605]]||5ยท11<sup>2</sup> |- |[[606 (number)|606]]||2ยท3ยท101 |- |[[607 (number)|607]]||'''607''' |- |[[608 (number)|608]]||2<sup>5</sup>ยท19 |- |[[609 (number)|609]]||3ยท7ยท29 |- |[[610 (number)|610]]||2ยท5ยท61 |- |[[611 (number)|611]]||13ยท47 |- |[[612 (number)|612]]||2<sup>2</sup>ยท3<sup>2</sup>ยท17 |- |[[613 (number)|613]]||'''613''' |- |[[614 (number)|614]]||2ยท307 |- |[[615 (number)|615]]||3ยท5ยท41 |- |[[616 (number)|616]]||2<sup>3</sup>ยท7ยท11 |- |[[617 (number)|617]]||'''617''' |- |[[618 (number)|618]]||2ยท3ยท103 |- |[[619 (number)|619]]||'''619''' |- |[[620 (number)|620]]||2<sup>2</sup>ยท5ยท31 |} | {| class="wikitable" |+ 621โ640 |- |[[621 (number)|621]]||3<sup>3</sup>ยท23 |- |[[622 (number)|622]]||2ยท311 |- |[[623 (number)|623]]||7ยท89 |- |[[624 (number)|624]]||2<sup>4</sup>ยท3ยท13 |- |[[625 (number)|625]]||5<sup>4</sup> |- |[[626 (number)|626]]||2ยท313 |- |[[627 (number)|627]]||3ยท11ยท19 |- |[[628 (number)|628]]||2<sup>2</sup>ยท157 |- |[[629 (number)|629]]||17ยท37 |- |[[630 (number)|630]]||2ยท3<sup>2</sup>ยท5ยท7 |- |[[631 (number)|631]]||'''631''' |- |[[632 (number)|632]]||2<sup>3</sup>ยท79 |- |[[633 (number)|633]]||3ยท211 |- |[[634 (number)|634]]||2ยท317 |- |[[635 (number)|635]]||5ยท127 |- |[[636 (number)|636]]||2<sup>2</sup>ยท3ยท53 |- |[[637 (number)|637]]||7<sup>2</sup>ยท13 |- |[[638 (number)|638]]||2ยท11ยท29 |- |[[639 (number)|639]]||3<sup>2</sup>ยท71 |- |[[640 (number)|640]]||2<sup>7</sup>ยท5 |} | {| class="wikitable" |+ 641โ660 |- |[[641 (number)|641]]||'''641''' |- |[[642 (number)|642]]||2ยท3ยท107 |- |[[643 (number)|643]]||'''643''' |- |[[644 (number)|644]]||2<sup>2</sup>ยท7ยท23 |- |[[645 (number)|645]]||3ยท5ยท43 |- |[[646 (number)|646]]||2ยท17ยท19 |- |[[647 (number)|647]]||'''647''' |- |[[648 (number)|648]]||2<sup>3</sup>ยท3<sup>4</sup> |- |[[649 (number)|649]]||11ยท59 |- |[[650 (number)|650]]||2ยท5<sup>2</sup>ยท13 |- |[[651 (number)|651]]||3ยท7ยท31 |- |[[652 (number)|652]]||2<sup>2</sup>ยท163 |- |[[653 (number)|653]]||'''653''' |- |[[654 (number)|654]]||2ยท3ยท109 |- |[[655 (number)|655]]||5ยท131 |- |[[656 (number)|656]]||2<sup>4</sup>ยท41 |- |[[657 (number)|657]]||3<sup>2</sup>ยท73 |- |[[658 (number)|658]]||2ยท7ยท47 |- |[[659 (number)|659]]||'''659''' |- |[[660 (number)|660]]||2<sup>2</sup>ยท3ยท5ยท11 |} | {| class="wikitable" |+ 661โ680 |- |[[661 (number)|661]]||'''661''' |- |[[662 (number)|662]]||2ยท331 |- |[[663 (number)|663]]||3ยท13ยท17 |- |[[664 (number)|664]]||2<sup>3</sup>ยท83 |- |[[665 (number)|665]]||5ยท7ยท19 |- |[[666 (number)|666]]||2ยท3<sup>2</sup>ยท37 |- |[[667 (number)|667]]||23ยท29 |- |[[668 (number)|668]]||2<sup>2</sup>ยท167 |- |[[669 (number)|669]]||3ยท223 |- |[[670 (number)|670]]||2ยท5ยท67 |- |[[671 (number)|671]]||11ยท61 |- |[[672 (number)|672]]||2<sup>5</sup>ยท3ยท7 |- |[[673 (number)|673]]||'''673''' |- |[[674 (number)|674]]||2ยท337 |- |[[675 (number)|675]]||3<sup>3</sup>ยท5<sup>2</sup> |- |[[676 (number)|676]]||2<sup>2</sup>ยท13<sup>2</sup> |- |[[677 (number)|677]]||'''677''' |- |[[678 (number)|678]]||2ยท3ยท113 |- |[[679 (number)|679]]||7ยท97 |- |[[680 (number)|680]]||2<sup>3</sup>ยท5ยท17 |} | {| class="wikitable" |+ 681โ700 |- |[[681 (number)|681]]||3ยท227 |- |[[682 (number)|682]]||2ยท11ยท31 |- |[[683 (number)|683]]||'''683''' |- |[[684 (number)|684]]||2<sup>2</sup>ยท3<sup>2</sup>ยท19 |- |[[685 (number)|685]]||5ยท137 |- |[[686 (number)|686]]||2ยท7<sup>3</sup> |- |[[687 (number)|687]]||3ยท229 |- |[[688 (number)|688]]||2<sup>4</sup>ยท43 |- |[[689 (number)|689]]||13ยท53 |- |[[690 (number)|690]]||2ยท3ยท5ยท23 |- |[[691 (number)|691]]||'''691''' |- |[[692 (number)|692]]||2<sup>2</sup>ยท173 |- |[[693 (number)|693]]||3<sup>2</sup>ยท7ยท11 |- |[[694 (number)|694]]||2ยท347 |- |[[695 (number)|695]]||5ยท139 |- |[[696 (number)|696]]||2<sup>3</sup>ยท3ยท29 |- |[[697 (number)|697]]||17ยท41 |- |[[698 (number)|698]]||2ยท349 |- |[[699 (number)|699]]||3ยท233 |- |[[700 (number)|700]]||2<sup>2</sup>ยท5<sup>2</sup>ยท7 |} |} == 701 to 800 == {| border="0" cellpadding="3" cellspacing="0" | {| class="wikitable" |+ 701โ720 |- |[[701 (number)|701]]||'''701''' |- |[[702 (number)|702]]||2ยท3<sup>3</sup>ยท13 |- |[[703 (number)|703]]||19ยท37 |- |[[704 (number)|704]]||2<sup>6</sup>ยท11 |- |[[705 (number)|705]]||3ยท5ยท47 |- |[[706 (number)|706]]||2ยท353 |- |[[707 (number)|707]]||7ยท101 |- |[[708 (number)|708]]||2<sup>2</sup>ยท3ยท59 |- |[[709 (number)|709]]||'''709''' |- |[[710 (number)|710]]||2ยท5ยท71 |- |[[711 (number)|711]]||3<sup>2</sup>ยท79 |- |[[712 (number)|712]]||2<sup>3</sup>ยท89 |- |[[713 (number)|713]]||23ยท31 |- |[[714 (number)|714]]||2ยท3ยท7ยท17 |- |[[715 (number)|715]]||5ยท11ยท13 |- |[[716 (number)|716]]||2<sup>2</sup>ยท179 |- |[[717 (number)|717]]||3ยท239 |- |[[718 (number)|718]]||2ยท359 |- |[[719 (number)|719]]||'''719''' |- |[[720 (number)|720]]||2<sup>4</sup>ยท3<sup>2</sup>ยท5 |} | {| class="wikitable" |+ 721โ740 |- |[[721 (number)|721]]||7ยท103 |- |[[722 (number)|722]]||2ยท19<sup>2</sup> |- |[[723 (number)|723]]||3ยท241 |- |[[724 (number)|724]]||2<sup>2</sup>ยท181 |- |[[725 (number)|725]]||5<sup>2</sup>ยท29 |- |[[726 (number)|726]]||2ยท3ยท11<sup>2</sup> |- |[[727 (number)|727]]||'''727''' |- |[[728 (number)|728]]||2<sup>3</sup>ยท7ยท13 |- |[[729 (number)|729]]||3<sup>6</sup> |- |[[730 (number)|730]]||2ยท5ยท73 |- |[[731 (number)|731]]||17ยท43 |- |[[732 (number)|732]]||2<sup>2</sup>ยท3ยท61 |- |[[733 (number)|733]]||'''733''' |- |[[734 (number)|734]]||2ยท367 |- |[[735 (number)|735]]||3ยท5ยท7<sup>2</sup> |- |[[736 (number)|736]]||2<sup>5</sup>ยท23 |- |[[737 (number)|737]]||11ยท67 |- |[[738 (number)|738]]||2ยท3<sup>2</sup>ยท41 |- |[[739 (number)|739]]||'''739''' |- |[[740 (number)|740]]||2<sup>2</sup>ยท5ยท37 |} | {| class="wikitable" |+ 741โ760 |- |[[741 (number)|741]]||3ยท13ยท19 |- |[[742 (number)|742]]||2ยท7ยท53 |- |[[743 (number)|743]]||'''743''' |- |[[744 (number)|744]]||2<sup>3</sup>ยท3ยท31 |- |[[745 (number)|745]]||5ยท149 |- |[[746 (number)|746]]||2ยท373 |- |[[747 (number)|747]]||3<sup>2</sup>ยท83 |- |[[748 (number)|748]]||2<sup>2</sup>ยท11ยท17 |- |[[749 (number)|749]]||7ยท107 |- |[[750 (number)|750]]||2ยท3ยท5<sup>3</sup> |- |[[751 (number)|751]]||'''751''' |- |[[752 (number)|752]]||2<sup>4</sup>ยท47 |- |[[753 (number)|753]]||3ยท251 |- |[[754 (number)|754]]||2ยท13ยท29 |- |[[755 (number)|755]]||5ยท151 |- |[[756 (number)|756]]||2<sup>2</sup>ยท3<sup>3</sup>ยท7 |- |[[757 (number)|757]]||'''757''' |- |[[758 (number)|758]]||2ยท379 |- |[[759 (number)|759]]||3ยท11ยท23 |- |[[760 (number)|760]]||2<sup>3</sup>ยท5ยท19 |} | {| class="wikitable" |+ 761โ780 |- |[[761 (number)|761]]||'''761''' |- |[[762 (number)|762]]||2ยท3ยท127 |- |[[763 (number)|763]]||7ยท109 |- |[[764 (number)|764]]||2<sup>2</sup>ยท191 |- |[[765 (number)|765]]||3<sup>2</sup>ยท5ยท17 |- |[[766 (number)|766]]||2ยท383 |- |[[767 (number)|767]]||13ยท59 |- |[[768 (number)|768]]||2<sup>8</sup>ยท3 |- |[[769 (number)|769]]||'''769''' |- |[[770 (number)|770]]||2ยท5ยท7ยท11 |- |[[771 (number)|771]]||3ยท257 |- |[[772 (number)|772]]||2<sup>2</sup>ยท193 |- |[[773 (number)|773]]||'''773''' |- |[[774 (number)|774]]||2ยท3<sup>2</sup>ยท43 |- |[[775 (number)|775]]||5<sup>2</sup>ยท31 |- |[[776 (number)|776]]||2<sup>3</sup>ยท97 |- |[[777 (number)|777]]||3ยท7ยท37 |- |[[778 (number)|778]]||2ยท389 |- |[[779 (number)|779]]||19ยท41 |- |[[780 (number)|780]]||2<sup>2</sup>ยท3ยท5ยท13 |} | {| class="wikitable" |+ 781โ800 |- |[[781 (number)|781]]||11ยท71 |- |[[782 (number)|782]]||2ยท17ยท23 |- |[[783 (number)|783]]||3<sup>3</sup>ยท29 |- |[[784 (number)|784]]||2<sup>4</sup>ยท7<sup>2</sup> |- |[[785 (number)|785]]||5ยท157 |- |[[786 (number)|786]]||2ยท3ยท131 |- |[[787 (number)|787]]||'''787''' |- |[[788 (number)|788]]||2<sup>2</sup>ยท197 |- |[[789 (number)|789]]||3ยท263 |- |[[790 (number)|790]]||2ยท5ยท79 |- |[[791 (number)|791]]||7ยท113 |- |[[792 (number)|792]]||2<sup>3</sup>ยท3<sup>2</sup>ยท11 |- |[[793 (number)|793]]||13ยท61 |- |[[794 (number)|794]]||2ยท397 |- |[[795 (number)|795]]||3ยท5ยท53 |- |[[796 (number)|796]]||2<sup>2</sup>ยท199 |- |[[797 (number)|797]]||'''797''' |- |[[798 (number)|798]]||2ยท3ยท7ยท19 |- |[[799 (number)|799]]||17ยท47 |- |[[800 (number)|800]]||2<sup>5</sup>ยท5<sup>2</sup> |} |} == 801 to 900 == {| border="0" cellpadding="3" cellspacing="0" | {| class="wikitable" |+ 801โ820 |- |[[801 (number) | 801 ]]||3<sup>2</sup>ยท89 |- |[[802 (number) | 802 ]]||2ยท401 |- |[[803 (number) | 803 ]]||11ยท73 |- |[[804 (number) | 804 ]]||2<sup>2</sup>ยท3ยท67 |- |[[805 (number) | 805 ]]||5ยท7ยท23 |- |[[806 (number) | 806 ]]||2ยท13ยท31 |- |[[807 (number) | 807 ]]||3ยท269 |- |[[808 (number) | 808 ]]||2<sup>3</sup>ยท101 |- |[[809 (number) | 809 ]]||'''809''' |- |[[810 (number) | 810 ]]||2ยท3<sup>4</sup>ยท5 |- |[[811 (number) | 811 ]]||'''811''' |- |[[812 (number) | 812 ]]||2<sup>2</sup>ยท7ยท29 |- |[[813 (number) | 813 ]]||3ยท271 |- |[[814 (number) | 814 ]]||2ยท11ยท37 |- |[[815 (number) | 815 ]]||5ยท163 |- |[[816 (number) | 816 ]]||2<sup>4</sup>ยท3ยท17 |- |[[817 (number) | 817 ]]||19ยท43 |- |[[818 (number) | 818 ]]||2ยท409 |- |[[819 (number) | 819 ]]||3<sup>2</sup>ยท7ยท13 |- |[[820 (number) | 820 ]]||2<sup>2</sup>ยท5ยท41 |} | {| class="wikitable" |+ 821โ840 |- |[[821 (number) | 821 ]]||'''821''' |- |[[822 (number) | 822 ]]||2ยท3ยท137 |- |[[823 (number) | 823 ]]||'''823''' |- |[[824 (number) | 824 ]]||2<sup>3</sup>ยท103 |- |[[825 (number) | 825 ]]||3ยท5<sup>2</sup>ยท11 |- |[[826 (number) | 826 ]]||2ยท7ยท59 |- |[[827 (number) | 827 ]]||'''827''' |- |[[828 (number) | 828 ]]||2<sup>2</sup>ยท3<sup>2</sup>ยท23 |- |[[829 (number) | 829 ]]||'''829''' |- |[[830 (number) | 830 ]]||2ยท5ยท83 |- |[[831 (number) | 831 ]]||3ยท277 |- |[[832 (number) | 832 ]]||2<sup>6</sup>ยท13 |- |[[833 (number) | 833 ]]||7<sup>2</sup>ยท17 |- |[[834 (number) | 834 ]]||2ยท3ยท139 |- |[[835 (number) | 835 ]]||5ยท167 |- |[[836 (number) | 836 ]]||2<sup>2</sup>ยท11ยท19 |- |[[837 (number) | 837 ]]||3<sup>3</sup>ยท31 |- |[[838 (number) | 838 ]]||2ยท419 |- |[[839 (number) | 839 ]]||'''839''' |- |[[840 (number) | 840 ]]||2<sup>3</sup>ยท3ยท5ยท7 |} | {| class="wikitable" |+ 841โ860 |- |[[841 (number) | 841 ]]||29<sup>2</sup> |- |[[842 (number) | 842 ]]||2ยท421 |- |[[843 (number) | 843 ]]||3ยท281 |- |[[844 (number) | 844 ]]||2<sup>2</sup>ยท211 |- |[[845 (number) | 845 ]]||5ยท13<sup>2</sup> |- |[[846 (number) | 846 ]]||2ยท3<sup>2</sup>ยท47 |- |[[847 (number) | 847 ]]||7ยท11<sup>2</sup> |- |[[848 (number) | 848 ]]||2<sup>4</sup>ยท53 |- |[[849 (number) | 849 ]]||3ยท283 |- |[[850 (number) | 850 ]]||2ยท5<sup>2</sup>ยท17 |- |[[851 (number) | 851 ]]||23ยท37 |- |[[852 (number) | 852 ]]||2<sup>2</sup>ยท3ยท71 |- |[[853 (number) | 853 ]]||'''853''' |- |[[854 (number) | 854 ]]||2ยท7ยท61 |- |[[855 (number) | 855 ]]||3<sup>2</sup>ยท5ยท19 |- |[[856 (number) | 856 ]]||2<sup>3</sup>ยท107 |- |[[857 (number) | 857 ]]||'''857''' |- |[[858 (number) | 858 ]]||2ยท3ยท11ยท13 |- |[[859 (number) | 859 ]]||'''859''' |- |[[860 (number) | 860 ]]||2<sup>2</sup>ยท5ยท43 |} | {| class="wikitable" |+ 861 - 880 |- |[[861 (number) | 861 ]]||3ยท7ยท41 |- |[[862 (number) | 862 ]]||2ยท431 |- |[[863 (number) | 863 ]]||'''863''' |- |[[864 (number) | 864 ]]||2<sup>5</sup>ยท3<sup>3</sup> |- |[[865 (number) | 865 ]]||5ยท173 |- |[[866 (number) | 866 ]]||2ยท433 |- |[[867 (number) | 867 ]]||3ยท17<sup>2</sup> |- |[[868 (number) | 868 ]]||2<sup>2</sup>ยท7ยท31 |- |[[869 (number) | 869 ]]||11ยท79 |- |[[870 (number) | 870 ]]||2ยท3ยท5ยท29 |- |[[871 (number) | 871 ]]||13ยท67 |- |[[872 (number) | 872 ]]||2<sup>3</sup>ยท109 |- |[[873 (number) | 873 ]]||3<sup>2</sup>ยท97 |- |[[874 (number) | 874 ]]||2ยท19ยท23 |- |[[875 (number) | 875 ]]||5<sup>3</sup>ยท7 |- |[[876 (number) | 876 ]]||2<sup>2</sup>ยท3ยท73 |- |[[877 (number) | 877 ]]||'''877''' |- |[[878 (number) | 878 ]]||2ยท439 |- |[[879 (number) | 879 ]]||3ยท293 |- |[[880 (number) | 880 ]]||2<sup>4</sup>ยท5ยท11 |} | {| class="wikitable" |+ 881โ900 |- |[[881 (number) | 881 ]]||'''881''' |- |[[882 (number) | 882 ]]||2ยท3<sup>2</sup>ยท7<sup>2</sup> |- |[[883 (number) | 883 ]]||'''883''' |- |[[884 (number) | 884 ]]||2<sup>2</sup>ยท13ยท17 |- |[[885 (number) | 885 ]]||3ยท5ยท59 |- |[[886 (number) | 886 ]]||2ยท443 |- |[[887 (number) | 887 ]]||'''887''' |- |[[888 (number) | 888 ]]||2<sup>3</sup>ยท3ยท37 |- |[[889 (number) | 889 ]]||7ยท127 |- |[[890 (number) | 890 ]]||2ยท5ยท89 |- |[[891 (number) | 891 ]]||3<sup>4</sup>ยท11 |- |[[892 (number) | 892 ]]||2<sup>2</sup>ยท223 |- |[[893 (number) | 893 ]]||19ยท47 |- |[[894 (number) | 894 ]]||2ยท3ยท149 |- |[[895 (number) | 895 ]]||5ยท179 |- |[[896 (number) | 896 ]]||2<sup>7</sup>ยท7 |- |[[897 (number) | 897 ]]||3ยท13ยท23 |- |[[898 (number) | 898 ]]||2ยท449 |- |[[899 (number) | 899 ]]||29ยท31 |- |[[900 (number) |900]]||2<sup>2</sup>ยท3<sup>2</sup>ยท5<sup>2</sup> |} |} == 901 to 1000 == {| border="0" cellpadding="3" cellspacing="0" | {| class="wikitable" |+ 901โ920 |- |[[ 901 (number) | 901 ]]||17ยท53 |- |[[ 902 (number) | 902 ]]||2ยท11ยท41 |- |[[ 903 (number) | 903 ]]||3ยท7ยท43 |- |[[ 904 (number) | 904 ]]||2<sup>3</sup>ยท113 |- |[[ 905 (number) | 905 ]]||5ยท181 |- |[[ 906 (number) | 906 ]]||2ยท3ยท151 |- |[[ 907 (number) | 907 ]]||'''907''' |- |[[ 908 (number) | 908 ]]||2<sup>2</sup>ยท227 |- |[[ 909 (number) | 909 ]]||3<sup>2</sup>ยท101 |- |[[ 910 (number) | 910 ]]||2ยท5ยท7ยท13 |- |[[ 911 (number) | 911 ]]||'''911''' |- |[[ 912 (number) | 912 ]]||2<sup>4</sup>ยท3ยท19 |- |[[ 913 (number) | 913 ]]||11ยท83 |- |[[ 914 (number) | 914 ]]||2ยท457 |- |[[ 915 (number) | 915 ]]||3ยท5ยท61 |- |[[ 916 (number) | 916 ]]||2<sup>2</sup>ยท229 |- |[[ 917 (number) | 917 ]]||7ยท131 |- |[[ 918 (number) | 918 ]]||2ยท3<sup>3</sup>ยท17 |- |[[ 919 (number) | 919 ]]||'''919''' |- |[[ 920 (number) | 920 ]]||2<sup>3</sup>ยท5ยท23 |} | {| class="wikitable" |+ 921 - 940 |- |[[ 921 (number) | 921 ]]||3ยท307 |- |[[ 922 (number) | 922 ]]||2ยท461 |- |[[ 923 (number) | 923 ]]||13ยท71 |- |[[ 924 (number) | 924 ]]||2<sup>2</sup>ยท3ยท7ยท11 |- |[[ 925 (number) | 925 ]]||5<sup>2</sup>ยท37 |- |[[ 926 (number) | 926 ]]||2ยท463 |- |[[ 927 (number) | 927 ]]||3<sup>2</sup>ยท103 |- |[[ 928 (number) | 928 ]]||2<sup>5</sup>ยท29 |- |[[ 929 (number) | 929 ]]||'''929''' |- |[[ 930 (number) | 930 ]]||2ยท3ยท5ยท31 |- |[[ 931 (number) | 931 ]]||7<sup>2</sup>ยท19 |- |[[ 932 (number) | 932 ]]||2<sup>2</sup>ยท233 |- |[[ 933 (number) | 933 ]]||3ยท311 |- |[[ 934 (number) | 934 ]]||2ยท467 |- |[[ 935 (number) | 935 ]]||5ยท11ยท17 |- |[[ 936 (number) | 936 ]]||2<sup>3</sup>ยท3<sup>2</sup>ยท13 |- |[[ 937 (number) | 937 ]]||'''937''' |- |[[ 938 (number) | 938 ]]||2ยท7ยท67 |- |[[ 939 (number) | 939 ]]||3ยท313 |- |[[ 940 (number) | 940 ]]||2<sup>2</sup>ยท5ยท47 |} | {| class="wikitable" |+ 941โ960 |- |[[ 941 (number) | 941 ]]||'''941''' |- |[[ 942 (number) | 942 ]]||2ยท3ยท157 |- |[[ 943 (number) | 943 ]]||23ยท41 |- |[[ 944 (number) | 944 ]]||2<sup>4</sup>ยท59 |- |[[ 945 (number) | 945 ]]||3<sup>3</sup>ยท5ยท7 |- |[[ 946 (number) | 946 ]]||2ยท11ยท43 |- |[[ 947 (number) | 947 ]]||'''947''' |- |[[ 948 (number) | 948 ]]||2<sup>2</sup>ยท3ยท79 |- |[[ 949 (number) | 949 ]]||13ยท73 |- |[[ 950 (number) | 950 ]]||2ยท5<sup>2</sup>ยท19 |- |[[ 951 (number) | 951 ]]||3ยท317 |- |[[ 952 (number) | 952 ]]||2<sup>3</sup>ยท7ยท17 |- |[[ 953 (number) | 953 ]]||'''953''' |- |[[ 954 (number) | 954 ]]||2ยท3<sup>2</sup>ยท53 |- |[[ 955 (number) | 955 ]]||5ยท191 |- |[[ 956 (number) | 956 ]]||2<sup>2</sup>ยท239 |- |[[ 957 (number) | 957 ]]||3ยท11ยท29 |- |[[ 958 (number) | 958 ]]||2ยท479 |- |[[ 959 (number) | 959 ]]||7ยท137 |- |[[ 960 (number) | 960 ]]||2<sup>6</sup>ยท3ยท5 |} | {| class="wikitable" |+ 961โ980 |- |[[ 961 (number) | 961 ]]||31<sup>2</sup> |- |[[ 962 (number) | 962 ]]||2ยท13ยท37 |- |[[ 963 (number) | 963 ]]||3<sup>2</sup>ยท107 |- |[[ 964 (number) | 964 ]]||2<sup>2</sup>ยท241 |- |[[ 965 (number) | 965 ]]||5ยท193 |- |[[ 966 (number) | 966 ]]||2ยท3ยท7ยท23 |- |[[ 967 (number) | 967 ]]||'''967''' |- |[[ 968 (number) | 968 ]]||2<sup>3</sup>ยท11<sup>2</sup> |- |[[ 969 (number) | 969 ]]||3ยท17ยท19 |- |[[ 970 (number) | 970 ]]||2ยท5ยท97 |- |[[ 971 (number) | 971 ]]||'''971''' |- |[[ 972 (number) | 972 ]]||2<sup>2</sup>ยท3<sup>5</sup> |- |[[ 973 (number) | 973 ]]||7ยท139 |- |[[ 974 (number) | 974 ]]||2ยท487 |- |[[ 975 (number) | 975 ]]||3ยท5<sup>2</sup>ยท13 |- |[[ 976 (number) | 976 ]]||2<sup>4</sup>ยท61 |- |[[ 977 (number) | 977 ]]||'''977''' |- |[[ 978 (number) | 978 ]]||2ยท3ยท163 |- |[[ 979 (number) | 979 ]]||11ยท89 |- |[[ 980 (number) | 980 ]]||2<sup>2</sup>ยท5ยท7<sup>2</sup> |} | {| class="wikitable" |+ 981โ1000 |- |[[ 981 (number) | 981 ]]||3<sup>2</sup>ยท109 |- |[[ 982 (number) | 982 ]]||2ยท491 |- |[[ 983 (number) | 983 ]]||'''983''' |- |[[ 984 (number) | 984 ]]||2<sup>3</sup>ยท3ยท41 |- |[[ 985 (number) | 985 ]]||5ยท197 |- |[[ 986 (number) | 986 ]]||2ยท17ยท29 |- |[[ 987 (number) | 987 ]]||3ยท7ยท47 |- |[[ 988 (number) | 988 ]]||2<sup>2</sup>ยท13ยท19 |- |[[ 989 (number) | 989 ]]||23ยท43 |- |[[ 990 (number) | 990 ]]||2ยท3<sup>2</sup>ยท5ยท11 |- |[[ 991 (number) | 991 ]]||'''991''' |- |[[ 992 (number) | 992 ]]||2<sup>5</sup>ยท31 |- |[[ 993 (number) | 993 ]]||3ยท331 |- |[[ 994 (number) | 994 ]]||2ยท7ยท71 |- |[[ 995 (number) | 995 ]]||5ยท199 |- |[[ 996 (number) | 996 ]]||2<sup>2</sup>ยท3ยท83 |- |[[ 997 (number) | 997 ]]||'''997''' |- |[[ 998 (number) | 998 ]]||2ยท499 |- |[[ 999 (number) | 999 ]]||3<sup>3</sup>ยท37 |- |[[ 1000 (number) | 1000 ]] ||2<sup>3</sup>ยท5<sup>3</sup> |} |} ==See also== * {{annotated link|Fundamental theorem of arithmetic}} * {{annotated link|List of prime numbers}} * {{annotated link|Table of divisors}} {{DEFAULTSORT:Prime factors}} [[Category:Prime numbers]] [[Category:Elementary number theory]] [[Category:Mathematics-related lists]] [[Category:Mathematical tables]] [[Category:Number-related lists]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Annotated link
(
edit
)
Template:OEIS
(
edit
)
Template:Pp-sock
(
edit
)
Template:Short description
(
edit
)