Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Tangent half-angle formula
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{short description|Relates the tangent of half of an angle to trigonometric functions of the entire angle}} {{Trigonometry}}In [[trigonometry]], '''tangent half-angle formulas''' relate the tangent of half of an angle to trigonometric functions of the entire angle.<ref>''[https://books.google.com/books?id=ztcDUEiHLCYC&pg=SA6-PA19 Mathematics]''. United States, NAVEDTRA [i.e. Naval] Education and Training Program Management Support Activity, 1989. 6-19.</ref> == Formulae == The tangent of half an angle is the [[stereographic projection]] of the circle through the point at angle <math display="inline">\pi</math> [[radians]] onto the line through the angles <math display="inline">\pm \frac{\pi}{2}</math>. Tangent half-angle formulae include <math display="block"> \begin{align} \tan \tfrac12( \eta \pm \theta) &= \frac{\tan \tfrac12 \eta \pm \tan \tfrac12 \theta}{1 \mp \tan \tfrac12 \eta \, \tan \tfrac12 \theta} = \frac{\sin\eta \pm \sin\theta}{\cos\eta + \cos\theta} = -\frac{\cos\eta - \cos\theta}{\sin\eta \mp \sin\theta}\,, \end{align} </math> with simpler formulae when {{mvar|η}} is known to be {{math|0}}, {{math|''π''/2}}, {{math|''π''}}, or {{math|3''π''/2}} because {{math|sin(''η'')}} and {{math|cos(''η'')}} can be replaced by simple constants. In the reverse direction, the formulae include <math display="block"> \begin{align} \sin \alpha & = \frac{2\tan \tfrac12 \alpha}{1 + \tan ^2 \tfrac12 \alpha} \\[7pt] \cos \alpha & = \frac{1 - \tan ^2 \tfrac12 \alpha}{1 + \tan ^2 \tfrac12 \alpha} \\[7pt] \tan \alpha & = \frac{2\tan \tfrac12 \alpha}{1 - \tan ^2 \tfrac12 \alpha}\,. \end{align} </math> ==Proofs== ===Algebraic proofs=== Using the angle addition and subtraction formulae for both the sine and cosine one obtains <math display="block"> \begin{align} \sin (a+b) + \sin (a-b) &= 2 \sin a \cos b \\[15mu] \cos (a+b) + \cos (a-b) & = 2 \cos a \cos b\,. \end{align} </math> Setting <math display="inline">a= \tfrac12 (\eta+\theta)</math> and <math>b= \tfrac12 (\eta-\theta)</math> and substituting yields <math display="block"> \begin{align} \sin \eta + \sin \theta = 2 \sin \tfrac12(\eta+\theta) \, \cos \tfrac12(\eta-\theta) \\[15mu] \cos \eta + \cos \theta = 2 \cos\tfrac12(\eta+\theta) \, \cos\tfrac12(\eta-\theta)\,. \end{align} </math> Dividing the sum of sines by the sum of cosines gives <math display="block">\frac{\sin \eta + \sin \theta}{\cos \eta + \cos \theta} = \tan \tfrac12(\eta+\theta)\,.</math> Also, a similar calculation starting with <math>\sin (a+b) - \sin (a-b)</math> and <math>\cos (a+b) - \cos (a-b)</math> gives <math display="block">-\frac{\cos \eta - \cos \theta}{\sin \eta - \sin \theta} = \tan \tfrac12(\eta+\theta)\,.</math> Furthermore, using [[double-angle formulae]] and the Pythagorean identity <math display="inline">1 + \tan^2 \alpha = 1 \big/ \cos^2 \alpha</math> gives <math display="block"> \sin \alpha = 2\sin \tfrac12 \alpha \cos \tfrac12 \alpha = \frac{ 2 \sin \tfrac12 \alpha\, \cos \tfrac12 \alpha \Big/ \cos^2 \tfrac12 \alpha} {1 + \tan^2 \tfrac12 \alpha} = \frac{2\tan \tfrac12 \alpha}{1 + \tan^2 \tfrac12 \alpha} </math> <math display="block"> \cos \alpha = \cos^2 \tfrac12 \alpha - \sin^2 \tfrac12 \alpha = \frac{ \left(\cos^2 \tfrac12 \alpha - \sin^2 \tfrac12 \alpha\right) \Big/ \cos^2 \tfrac1 2 \alpha} { 1 + \tan^2 \tfrac12 \alpha} = \frac{1 - \tan^2 \tfrac12 \alpha}{1 + \tan^2 \tfrac12 \alpha}\,. </math> Taking the quotient of the formulae for sine and cosine yields <math display="block">\tan \alpha = \frac{2\tan \tfrac12 \alpha}{1 - \tan ^2 \tfrac12 \alpha}\,.</math> === Geometric proofs === [[File:Tan.half.svg|right|400px|thumb|The sides of this rhombus have length 1. The angle between the horizontal line and the shown diagonal is {{math|{{sfrac|1|2}} (''a'' + ''b'')}}. This is a geometric way to prove the particular tangent half-angle formula that says {{math|tan {{sfrac|1|2}} (''a'' + ''b'') {{=}} (sin ''a'' + sin ''b'') / (cos ''a'' + cos ''b'')}}. The formulae {{math|sin {{sfrac|1|2}}(''a'' + ''b'')}} and {{math|cos {{sfrac|1|2}}(''a'' + ''b'')}} are the ratios of the actual distances to the length of the diagonal.]] Applying the formulae derived above to the rhombus figure on the right, it is readily shown that <math display="block">\tan \tfrac12 (a+b) = \frac{\sin \tfrac12 (a + b)}{\cos \tfrac12 (a + b)} = \frac{\sin a + \sin b}{\cos a + \cos b}.</math> In the unit circle, application of the above shows that <math display="inline">t = \tan \tfrac12 \varphi</math>. By [[similar triangles|similarity of triangles]], <math display="block">\frac{t}{\sin \varphi} = \frac{1}{1+ \cos \varphi}.</math> It follows that <math display="block">t = \frac{\sin \varphi}{1+ \cos \varphi} = \frac{\sin \varphi(1- \cos \varphi)}{(1+ \cos \varphi)(1- \cos \varphi)} = \frac{1- \cos \varphi}{\sin \varphi}.</math> {{clear}} == The tangent half-angle substitution in integral calculus == {{Main|Tangent half-angle substitution}} [[Image:Weierstrass substitution.svg|right|400px|thumb|A [[geometric]] proof of the tangent half-angle substitution]] In various applications of [[trigonometry]], it is useful to rewrite the [[trigonometric function]]s (such as [[sine]] and [[cosine]]) in terms of [[rational function]]s of a new variable <math>t</math>. These identities are known collectively as the '''tangent half-angle formulae''' because of the definition of <math>t</math>. These identities can be useful in [[calculus]] for converting rational functions in sine and cosine to functions of {{math|''t''}} in order to find their [[antiderivative]]s. Geometrically, the construction goes like this: for any point {{math|(cos ''φ'', sin ''φ'')}} on the [[unit circle]], draw the line passing through it and the point {{math|(−1, 0)}}. This point crosses the {{math|''y''}}-axis at some point {{math|1=''y'' = ''t''}}. One can show using simple geometry that {{math|1=''t'' = tan(φ/2)}}. The equation for the drawn line is {{math|1=''y'' = (1 + ''x'')''t''}}. The equation for the intersection of the line and circle is then a [[quadratic equation]] involving {{math|''t''}}. The two solutions to this equation are {{math|(−1, 0)}} and {{math|(cos ''φ'', sin ''φ'')}}. This allows us to write the latter as rational functions of {{math|''t''}} (solutions are given below). The parameter {{math|''t''}} represents the [[stereographic projection]] of the point {{math|(cos ''φ'', sin ''φ'')}} onto the {{math|''y''}}-axis with the center of projection at {{math|(−1, 0)}}. Thus, the tangent half-angle formulae give conversions between the stereographic coordinate {{math|''t''}} on the unit circle and the standard angular coordinate {{math|''φ''}}. Then we have <math display="block"> \begin{align} & \sin\varphi = \frac{2t}{1 + t^2}, & & \cos\varphi = \frac{1 - t^2}{1 + t^2}, \\[8pt] & \tan\varphi = \frac{2t}{1 - t^2} & & \cot\varphi = \frac{1 - t^2}{2t}, \\[8pt] & \sec\varphi = \frac{1 + t^2}{1 - t^2}, & & \csc\varphi = \frac{1 + t^2}{2t}, \end{align} </math> and <math display="block">e^{i \varphi} = \frac{1 + i t}{1 - i t}, \qquad e^{-i \varphi} = \frac{1 - i t}{1 + i t}. </math> Both this expression of <math>e^{i\varphi}</math> and the expression <math>t = \tan(\varphi/2)</math> can be solved for <math>\varphi</math>. Equating these gives the [[arctangent]] in terms of the [[natural logarithm]] <math display="block">\arctan t = \frac{-i}{2} \ln\frac{1+it}{1-it}.</math> In [[calculus]], the tangent half-angle substitution is used to find antiderivatives of [[rational functions]] of {{math|sin ''φ''}} and {{math|cos ''φ''}}. Differentiating <math>t=\tan\tfrac12\varphi</math> gives <math display="block">\frac{dt}{d\varphi} = \tfrac12\sec^2 \tfrac12\varphi = \tfrac12(1+\tan^2 \tfrac12\varphi) = \tfrac12(1+t^2)</math> and thus <math display="block">d\varphi = {{2\,dt} \over {1 + t^2}}.</math> ===Hyperbolic identities=== One can play an entirely analogous game with the [[hyperbolic function]]s. A point on (the right branch of) a [[hyperbola]] is given by {{math|(cosh ''ψ'', sinh ''ψ'')}}. Projecting this onto {{math|''y''}}-axis from the center {{math|(−1, 0)}} gives the following: <math display="block">t = \tanh\tfrac12\psi = \frac{\sinh\psi}{\cosh\psi+1} = \frac{\cosh\psi-1}{\sinh\psi}</math> with the identities <math display="block"> \begin{align} & \sinh\psi = \frac{2t}{1 - t^2}, & & \cosh\psi = \frac{1 + t^2}{1 - t^2}, \\[8pt] & \tanh\psi = \frac{2t}{1 + t^2}, & & \coth\psi = \frac{1 + t^2}{2t}, \\[8pt] & \operatorname{sech}\,\psi = \frac{1 - t^2}{1 + t^2}, & & \operatorname{csch}\,\psi = \frac{1 - t^2}{2t}, \end{align} </math> and <math display="block">e^\psi = \frac{1 + t}{1 - t}, \qquad e^{-\psi} = \frac{1 - t}{1 + t}.</math> Finding {{math|''ψ''}} in terms of {{math|''t''}} leads to following relationship between the [[inverse hyperbolic functions|inverse hyperbolic tangent]] <math>\operatorname{artanh}</math> and the natural logarithm: <math display="block">2 \operatorname{artanh} t = \ln\frac{1+t}{1-t}.</math> The hyperbolic tangent half-angle substitution in calculus uses <math display="block">d\psi = {{2\,dt} \over {1 - t^2}}\,.</math> ==The Gudermannian function== {{Main|Gudermannian function}} Comparing the hyperbolic identities to the circular ones, one notices that they involve the same functions of {{math|''t''}}, just permuted. If we identify the parameter {{math|''t''}} in both cases we arrive at a relationship between the circular functions and the hyperbolic ones. That is, if <math display="block">t = \tan\tfrac12 \varphi = \tanh\tfrac12 \psi</math> then <math display="block">\varphi = 2\arctan \bigl(\tanh \tfrac12 \psi\,\bigr) \equiv \operatorname{gd} \psi.</math> where {{math|gd(''ψ'')}} is the [[Gudermannian function]]. The Gudermannian function gives a direct relationship between the circular functions and the hyperbolic ones that does not involve complex numbers. The above descriptions of the tangent half-angle formulae (projection the unit circle and standard hyperbola onto the {{math|''y''}}-axis) give a geometric interpretation of this function. ==Rational values and Pythagorean triples== {{main article|Pythagorean triple}} Starting with a [[Pythagorean triangle]] with side lengths {{mvar|a}}, {{mvar|b}}, and {{mvar|c}} that are positive integers and satisfy {{math|''a''{{sup|2}} + ''b''{{sup|2}} {{=}} ''c''{{sup|2}}}}, it follows immediately that each [[interior angle]] of the triangle has rational values for sine and cosine, because these are just ratios of side lengths. Thus each of these angles has a rational value for its half-angle tangent, using {{math|tan ''φ''/2 {{=}} sin ''φ'' / (1 + cos ''φ'')}}. The reverse is also true. If there are two positive angles that sum to 90°, each with a rational half-angle tangent, and the third angle is a [[right angle]] then a triangle with these interior angles can be [[similar (geometry)|scaled to]] a Pythagorean triangle. If the third angle is not required to be a right angle, but is the angle that makes the three positive angles sum to 180° then the third angle will necessarily have a rational number for its half-angle tangent when the first two do (using angle addition and subtraction formulas for tangents) and the triangle can be scaled to a [[Heronian triangle]]. Generally, if {{mvar|K}} is a [[Field extension|subfield]] of the complex numbers then {{math|tan ''φ''/2 ∈ ''K'' ∪ {{mset|∞}}}} implies that {{math|{sin ''φ'', cos ''φ'', tan ''φ'', sec ''φ'', csc ''φ'', cot ''φ''} ⊆ ''K'' ∪ {{mset|∞}}}}. ==See also== {{Portal|Mathematics}} *[[List of trigonometric identities]] *[[Half-side formula]] ==External links== <!-- * {{springer|title=Tangent formula|id=p/t092150}} Invalid link. --> * [http://planetmath.org/encyclopedia/TangentOfHalvedAngle.html ''Tangent Of Halved Angle''] at [[Planetmath]] ==References== {{reflist}} {{DEFAULTSORT:Tangent Half-Angle Formula}} [[Category:Trigonometry]] [[Category:Conic sections]] [[Category:Mathematical identities]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Clear
(
edit
)
Template:Main
(
edit
)
Template:Main article
(
edit
)
Template:Math
(
edit
)
Template:Mvar
(
edit
)
Template:Portal
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)
Template:Trigonometry
(
edit
)