Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Tangent vector
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{short description|Vector tangent to a curve or surface at a given point}} In [[mathematics]], a '''tangent vector''' is a [[Vector (geometry)|vector]] that is [[tangent]] to a [[curve]] or [[Surface (mathematics)|surface]] at a given point. Tangent vectors are described in the [[differential geometry of curves]] in the context of curves in '''R'''<sup>''n''</sup>. More generally, tangent vectors are elements of a ''[[tangent space]]'' of a [[differentiable manifold]]. Tangent vectors can also be described in terms of [[Germ (mathematics)|germs]]. Formally, a tangent vector at the point <math>x</math> is a linear [[Derivation (differential algebra)|derivation]] of the algebra defined by the set of germs at <math>x</math>. == Motivation == Before proceeding to a general definition of the tangent vector, we discuss its use in [[calculus]] and its [[tensor]] properties. === Calculus === Let <math>\mathbf{r}(t)</math> be a parametric [[smooth curve]]. The tangent vector is given by <math>\mathbf{r}'(t)</math> provided it exists and provided <math>\mathbf{r}'(t)\neq \mathbf{0}</math>, where we have used a prime instead of the usual dot to indicate differentiation with respect to parameter {{mvar|t}}.<ref>J. Stewart (2001)</ref> The unit tangent vector is given by <math display="block">\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|}\,.</math> ==== Example ==== Given the curve <math display="block">\mathbf{r}(t) = \left\{\left(1+t^2, e^{2t}, \cos{t}\right) \mid t\in\R\right\}</math> in <math>\R^3</math>, the unit tangent vector at <math>t = 0</math> is given by <math display="block">\mathbf{T}(0) = \frac{\mathbf{r}'(0)}{\|\mathbf{r}'(0)\|} = \left.\frac{(2t, 2e^{2t}, -\sin{t})}{\sqrt{4t^2 + 4e^{4t} + \sin^2{t}}}\right|_{t=0} = (0,1,0)\,.</math> === Contravariance === If <math>\mathbf{r}(t)</math> is given parametrically in the [[n-dimensional coordinate system|''n''-dimensional coordinate system]] {{math|''x<sup>i</sup>''}} (here we have used superscripts as an index instead of the usual subscript) by <math>\mathbf{r}(t) = (x^1(t), x^2(t), \ldots, x^n(t))</math> or <math display="block">\mathbf{r} = x^i = x^i(t), \quad a\leq t\leq b\,,</math> then the tangent vector field <math>\mathbf{T} = T^i</math> is given by <math display="block">T^i = \frac{dx^i}{dt}\,.</math> Under a change of coordinates <math display="block">u^i = u^i(x^1, x^2, \ldots, x^n), \quad 1\leq i\leq n</math> the tangent vector <math>\bar{\mathbf{T}} = \bar{T}^i</math> in the {{math|''u<sup>i</sup>''}}-coordinate system is given by <math display="block">\bar{T}^i = \frac{du^i}{dt} = \frac{\partial u^i}{\partial x^s} \frac{dx^s}{dt} = T^s \frac{\partial u^i}{\partial x^s}</math> where we have used the [[Einstein notation|Einstein summation convention]]. Therefore, a tangent vector of a smooth curve will transform as a [[Covariance and contravariance of vectors|contravariant]] tensor of order one under a change of coordinates.<ref>D. Kay (1988)</ref> == Definition == Let <math>f: \R^n \to \R</math> be a differentiable function and let <math>\mathbf{v}</math> be a vector in <math>\R^n</math>. We define the directional derivative in the <math>\mathbf{v}</math> direction at a point <math>\mathbf{x} \in \R^n</math> by <math display="block">\nabla_\mathbf{v} f(\mathbf{x}) = \left.\frac{d}{dt} f(\mathbf{x} + t\mathbf{v})\right|_{t=0} = \sum_{i=1}^{n} v_i \frac{\partial f}{\partial x_i}(\mathbf{x})\,.</math> The tangent vector at the point <math>\mathbf{x}</math> may then be defined<ref>A. Gray (1993)</ref> as <math display="block">\mathbf{v}(f(\mathbf{x})) \equiv (\nabla_\mathbf{v}(f)) (\mathbf{x})\,.</math> == Properties == Let <math>f,g:\mathbb{R}^n\to\mathbb{R}</math> be differentiable functions, let <math>\mathbf{v},\mathbf{w}</math> be tangent vectors in <math>\mathbb{R}^n</math> at <math>\mathbf{x}\in\mathbb{R}^n</math>, and let <math>a,b\in\mathbb{R}</math>. Then #<math>(a\mathbf{v}+b\mathbf{w})(f)=a\mathbf{v}(f)+b\mathbf{w}(f)</math> #<math>\mathbf{v}(af+bg)=a\mathbf{v}(f)+b\mathbf{v}(g)</math> #<math>\mathbf{v}(fg)=f(\mathbf{x})\mathbf{v}(g)+g(\mathbf{x})\mathbf{v}(f)\,.</math> ==Tangent vector on manifolds== Let <math>M</math> be a differentiable manifold and let <math>A(M)</math> be the algebra of real-valued differentiable functions on <math>M</math>. Then the tangent vector to <math>M</math> at a point <math>x</math> in the manifold is given by the [[Derivation (differential algebra)|derivation]] <math>D_v:A(M)\rightarrow\mathbb{R}</math> which shall be linear — i.e., for any <math>f,g\in A(M)</math> and <math>a,b\in\mathbb{R}</math> we have :<math>D_v(af+bg)=aD_v(f)+bD_v(g)\,.</math> Note that the derivation will by definition have the Leibniz property :<math>D_v(f\cdot g)(x)=D_v(f)(x)\cdot g(x)+f(x)\cdot D_v(g)(x)\,.</math> == See also == *{{slink|Differentiable curve#Tangent vector}} *{{slink|Differentiable surface#Tangent plane and normal vector}} == References == <references /> == Bibliography == * {{citation|first=Alfred|last=Gray|title=Modern Differential Geometry of Curves and Surfaces|publisher=CRC Press|publication-place=Boca Raton|year=1993}}. * {{citation|first=James|last=Stewart|title=Calculus: Concepts and Contexts|publisher=Thomson/Brooks/Cole|publication-place=Australia|year=2001}}. * {{citation|first=David|last=Kay|title=Schaums Outline of Theory and Problems of Tensor Calculus|publisher=McGraw-Hill|publication-place=New York|year=1988}}. [[Category:Vectors (mathematics and physics)]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Citation
(
edit
)
Template:Math
(
edit
)
Template:Mvar
(
edit
)
Template:Short description
(
edit
)
Template:Slink
(
edit
)