Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Thermal diffusivity
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Rate at which heat spreads throughout a material}} In [[thermodynamics]], '''thermal diffusivity''' is the [[thermal conductivity]] divided by [[density]] and [[specific heat capacity]] at constant pressure.<ref>{{CRC90|page=2-65}}</ref> It is a measure of the rate of [[heat transfer]] inside a material and has [[SI|SI units]] of m<sup>2</sup>/s. It is an [[intensive property]]. Thermal diffusivity is usually denoted by lowercase [[alpha]] ({{mvar|α}}), but {{mvar|a}}, {{mvar|h}}, {{mvar|κ}} ([[kappa]]),<ref>{{cite book |last1=Hetnarski |first1=Richard B. |last2=Eslami |first2=M. Reza |title=Thermal Stresses – Advanced Theory and Applications |year=2009 |publisher=Springer Netherlands |location=Dordrecht |isbn=978-1-4020-9247-3 |pages=170 |edition=Online-Ausg. |doi=10.1007/978-3-030-10436-8}}</ref> {{mvar|K}},<ref name = AJP>{{cite journal |last1=Unsworth |first1=J. |last2=Duarte |first2=From. J. |author2-link=F. J. Duarte |title=Heat diffusion in a solid sphere and Fourier Theory |journal=Am. J. Phys. |pages=891–893 |doi=10.1119/1.11601 |volume=47 |bibcode=1979AmJPh..47..981U |issue=11 |year=1979}}</ref> {{mvar|D}}, <math>D_T</math> are also used. The formula is<ref>{{cite book |first1=R. Byron |last1=Bird |first2=Warren E. |last2=Stewart |first3=Edwin N. |last3=Lightfoot |title=Transport Phenomena |publisher=John Wiley and Sons, Inc. |year=1960 |isbn=978-0-471-07392-5 |at=Eq. 8.1-7 |url-access=registration |url=https://archive.org/details/transportphenome00bird}}</ref> <math display="block"> \alpha = \frac{k}{\rho c_p}, </math> where : {{mvar|k}} is [[thermal conductivity]] (W/(m·K)), : {{mvar|c{{sub|p}}}} is [[specific heat capacity]] (J/(kg·K)), : {{mvar|ρ}} is [[density]] (kg/m<sup>3</sup>). Together, {{mvar|ρc{{sub|p}}}} can be considered the [[volumetric heat capacity]] (J/(m<sup>3</sup>·K)). Thermal diffusivity is a positive [[coefficient]] in the [[heat equation]]:<ref>{{cite book |last1=Carslaw |first1=H. S. |author1-link=Horatio Scott Carslaw |last2=Jaeger |first2=J. C. |author2-link=John Conrad Jaeger |year=1959 |title=Conduction of Heat in Solids |edition=2nd |publisher=Oxford University Press |isbn=978-0-19-853368-9}}</ref> <math display="block"> \frac{\partial T}{\partial t} = \alpha \nabla^2 T. </math> One way to view thermal diffusivity is as the ratio of the [[time derivative]] of [[temperature]] to its [[Second derivative#Generalization to higher dimensions|curvature]], quantifying the rate at which temperature concavity is "smoothed out". In a substance with high thermal diffusivity, heat moves rapidly through it because the substance conducts heat quickly relative to its energy storage capacity or "thermal bulk". Thermal diffusivity and [[thermal effusivity]] are related concepts and quantities used to simulate [[non-equilibrium thermodynamics]]. Diffusivity is the more fundamental concept and describes the [[stochastic process]] of heat spread throughout some ''[[local property|local]] volume'' of a substance. Effusivity describes the corresponding transient process of heat flow through some ''local area'' of interest. Upon reaching a [[steady state]], where the stored energy distribution stabilizes, the thermal conductivity ({{mvar|k}}) may be sufficient to describe heat transfers inside solid or rigid bodies by applying [[Fourier's law]].<ref>{{cite book |last=Dante |first=Roberto C. |title=Handbook of Friction Materials and Their Applications |year=2016 |publisher=Elsevier |doi=10.1016/B978-0-08-100619-1.00009-2 |pages=123–134}}</ref><ref>{{cite book |last=Venkanna |first=B. K. |title=Fundamentals of Heat and Mass Transfer |url=https://books.google.com/books?id=IIIVHRirRgEC&pg=PA38 |access-date=1 December 2011 |year=2010 |publisher=PHI Learning |location=New Delhi |isbn=978-81-203-4031-2 |page=38}}</ref> Thermal diffusivity is often measured with the [[Laser flash analysis|flash method]].<ref>{{Cite web |url=http://www.netzsch.com/en/home/ |title=NETZSCH-Gerätebau, Germany |access-date=2012-03-12 |archive-url=https://web.archive.org/web/20120311084633/http://www.netzsch.com/en/home/ |archive-date=2012-03-11 |url-status=dead }}</ref><ref name="Parker"> {{cite journal |author1=W. J. Parker |author2=R. J. Jenkins |author3=C. P. Butler |author4=G. L. Abbott |title=Method of Determining Thermal Diffusivity, Heat Capacity and Thermal Conductivity |journal=Journal of Applied Physics |volume=32 |issue=9 |page=1679 |year=1961 |doi=10.1063/1.1728417 |bibcode=1961JAP....32.1679P }}</ref> It involves heating a strip or cylindrical sample with a short energy pulse at one end and analyzing the temperature change (reduction in amplitude and phase shift of the pulse) a short distance away.<ref> {{cite journal |author1=J. Blumm |author2=J. Opfermann |title= Improvement of the mathematical modeling of flash measurements |journal=High Temperatures – High Pressures |volume=34 |issue=5 |page=515 |year=2002 |doi=10.1068/htjr061 }}</ref><ref>{{cite conference |last=Thermitus |first=M.-A. |editor=Gaal, Daniela S. |editor2=Gaal, Peter S. |title=New Beam Size Correction for Thermal Diffusivity Measurement with the Flash Method |conference=30th International Thermal Conductivity Conference/18th International Thermal Expansion Symposium |conference-url=https://web.archive.org/web/20100128105338/http://www.thermalconductivity.org/ |book-title=Thermal Conductivity 30/Thermal Expansion 18 |url=https://books.google.com/books?id=F9row3bxLuYC&pg=PA217 |access-date=1 December 2011 |date=October 2010 |publisher=DEStech Publications |location=Lancaster, PA |isbn=978-1-60595-015-0 |page=217}}</ref> == Thermal diffusivity of selected materials and substances == {| class="wikitable sortable" |+Thermal diffusivity of selected materials and substances<ref>{{cite book| title=Introduction to Heat Transfer|edition= 3rd|publisher=McGraw-Hill| year=1958| last1=Brown |last2= Marco}} and {{cite book| last1=Eckert |last2=Drake| title=Heat and Mass Transfer| publisher=McGraw-Hill| year=1959| isbn=978-0-89116-553-8}} cited in {{cite book| first=J.P. |last=Holman| title=Heat Transfer| edition=9th| publisher=McGraw-Hill|year= 2002| isbn=978-0-07-029639-8}}</ref> ! Material !!Thermal diffusivity<br>(mm<sup>2</sup>/s)!!Refs. |- | [[Pyrolytic carbon|Pyrolytic graphite]], parallel to layers ||1220|| |- | [[Diamond]] ||1060–1160|| |- |Carbon/carbon composite at 25 °C |216.5 |<ref name="Casalegno2010" /> |- |Helium (300 K, 1 atm) |190 |<ref name="baierlein">{{cite book|title=CDC Handbook of Chemistry and Physics|publisher=Chemical Rubber Publishing Company|year=1992|editor-last=Lide|editor-first=David R.|edition=71st|location=Boston}} cited in {{cite book|last=Baierlein|first=Ralph|url=https://archive.org/details/thermalphysics00ralp|title=Thermal Physics|publisher=Cambridge University Press|year=1999|isbn=978-0-521-59082-2|location=Cambridge, UK|page=[https://archive.org/details/thermalphysics00ralp/page/372 372]|access-date=1 December 2011|url-access=registration}}</ref> |- | Silver, pure (99.9%) ||165.63|| |- |Hydrogen (300 K, 1 atm) |160 |<ref name="baierlein" /> |- | [[Gold]] ||127||<ref name="eleccool">{{cite journal|url=http://www.electronics-cooling.com/2007/08/thermal-diffusivity/|title=Materials Data|author=Jim Wilson|journal=Electronics Cooling|date=August 2007}}</ref> |- | [[Copper]] at 25 °C || 111||<ref name="Casalegno2010">{{cite journal|title= Measurement of thermal properties of a ceramic/metal joint by laser flash method |journal= Journal of Nuclear Materials |volume=407 |issue=2|page=83 |author1=V. Casalegno |author2=P. Vavassori |author3=M. Valle |author4=M. Ferraris |author5=M. Salvo |author6=G. Pintsuk | year= 2010 |doi=10.1016/j.jnucmat.2010.09.032|bibcode = 2010JNuM..407...83C }}</ref> |- | [[Aluminium]] || 97|| <ref name="eleccool"/> |- |Silicon |88 |<ref name="eleccool" /> |- | Al-10Si-Mn-Mg (Silafont 36) at 20 °C || 74.2|| <ref>{{cite journal |author1=P. Hofer |author2=E. Kaschnitz | title= Thermal diffusivity of the aluminium alloy Al-10Si-Mn-Mg (Silafont 36) in the solid and liquid states |journal= High Temperatures – High Pressures | volume=40 |issue=3–4 |page=311 | year= 2011|url= http://www.oldcitypublishing.com/HTHP/HTHPcontents/HTHP40.3-4contents.html }}</ref> |- | Aluminium 6061-T6 Alloy || 64||<ref name="eleccool"/> |- |[[Molybdenum]] (99.95%) at 25 °C || 54.3||<ref>{{cite conference|conference=17th [[PLANSEE|Plansee]] Seminar |title= Measurement of the Thermophysical Properties of Pure Molybdenum |author1=A. Lindemann |author2=J. Blumm | year= 2009 |volume=3 }}</ref> |- | Al-5Mg-2Si-Mn (Magsimal-59) at 20 °C || 44.0|| <ref>{{cite journal |author1=E. Kaschnitz |author2=M. Küblböck |title=Thermal diffusivity of the aluminium alloy Al-5Mg-2Si-Mn (Magsimal-59) in the solid and liquid states|journal=High Temperatures – High Pressures |volume= 37 |issue=3 |page= 221 | year= 2008 |url= http://www.oldcitypublishing.com/HTHP/HTHPcontents/HTHP37.3contents.html }}</ref> |- |Tin |40 |<ref name="eleccool" /> |- |Water vapor (1 atm, 400 K) |23.38 | |- | Iron || 23||<ref name="eleccool" /> |- |Argon (300 K, 1 atm) |22 |<ref name="baierlein" /> |- |Nitrogen (300 K, 1 atm) |22 |<ref name="baierlein" /> |- |Air (300 K) |19 |<ref name="eleccool" /> |- | [[Steel]], AISI 1010 (0.1% carbon) || 18.8|| <ref>{{cite book|last=Lienhard|first=John H. Lienhard, John H. |title=A Heat Transfer Textbook|year=2019|publisher=Dover Pub|page= 715|edition=5th}}</ref> |- |Aluminium oxide (polycrystalline) |12.0 | |- | [[Steel]], 1% carbon ||11.72|| |- |Si<sub>3</sub>N<sub>4</sub> with [[carbon nanotube|CNTs]] 26 °C |9.142 |<ref name="Koszor2009">{{cite journal|author1=O. Koszor|author2=A. Lindemann|author3=F. Davin|author4=C. Balázsi|year=2009|title=Observation of thermophysical and tribological properties of CNT reinforced Si<sub>3</sub> N<sub>4</sub>|journal=Key Engineering Materials|volume=409|page=354|doi=10.4028/www.scientific.net/KEM.409.354|s2cid=136957396}}</ref> |- |Si<sub>3</sub>N<sub>4</sub> without [[carbon nanotube|CNTs]] 26 °C |8.605 |<ref name="Koszor2009" /> |- | Steel, stainless 304A at 27 °C || 4.2|| <ref name="eleccool"/> |- |Pyrolytic graphite, normal to layers |3.6 | |- | Steel, stainless 310 at 25 °C || 3.352||<ref>{{cite journal |author1=J. Blumm |author2=A. Lindemann |author3=B. Niedrig |author4=R. Campbell |title=Measurement of Selected Thermophysical Properties of the NPL Certified Reference Material Stainless Steel 310 |journal=[[International Journal of Thermophysics]] |volume=28 |page=674 |year=2007 |doi= 10.1007/s10765-007-0177-z |issue=2 |bibcode = 2007IJT....28..674B |s2cid=120628607 }}</ref> |- | [[Inconel 600]] at 25 °C || 3.428|| <ref>{{cite journal |author1=J. Blumm |author2=A. Lindemann |author3=B. Niedrig |title= Measurement of the thermophysical properties of an NPL thermal conductivity standard Inconel 600|journal= High Temperatures – High Pressures |volume=35/36 |issue=6 |page=621 | year= 2003–2007 |url=http://www.perceptionweb.com/abstract.cgi?id=htjr145 |doi=10.1068/htjr145|url-access=subscription }}</ref> |- | Quartz || 1.4|| <ref name="eleccool"/> |- |Sandstone |1.15 | |- |Ice at 0 °C |1.02 | |- | Silicon dioxide (polycrystalline) || 0.83||<ref name="eleccool"/> |- |Brick, common |0.52 | |- |Glass, window |0.34 | |- |Brick, adobe |0.27 | |- | [[Polycarbonate|PC]] (polycarbonate) at 25 °C || 0.144|| <ref name="HTHP3536pp627">{{cite journal |author1=J. Blumm |author2=A. Lindemann |title= Characterization of the thermophysical properties of molten polymers and liquids using the flash technique |journal=High Temperatures – High Pressures |volume= 35/36 |issue=6 |page= 627 | year= 2003–2007 |doi=10.1068/htjr144 |url=http://www.eyoungindustry.com/uploadfile/file/20151027/20151027211034_96662.pdf}}</ref> |- |Water at 25 °C |0.143 |<ref name="HTHP3536pp627" /> |- |[[PTFE]] (Polytetrafluorethylene) at 25 °C |0.124 |<ref>{{cite journal|author1=J. Blumm|author2=A. Lindemann|author3=M. Meyer|author4=C. Strasser|year=2011|title=Characterization of PTFE Using Advanced Thermal Analysis Technique|journal=International Journal of Thermophysics|volume=40|issue=3–4|page=311|bibcode=2010IJT....31.1919B|doi=10.1007/s10765-008-0512-z|s2cid=122020437}}</ref> |- | [[polypropylene|PP]] (polypropylene) at 25 °C || 0.096|| <ref name="HTHP3536pp627"/> |- |Nylon |0.09 | |- |Rubber |0.089–0.13 |<ref name="AJP" /> |- |Wood (yellow pine) |0.082 | |- | Paraffin at 25 °C || 0.081||<ref name="HTHP3536pp627"/> |- | [[PVC]] (polyvinyl chloride) || 0.08|| <ref name="eleccool"/> |- | Oil, engine (saturated liquid, 100 °C) || 0.0738|| |- | Alcohol || 0.07||<ref name="eleccool"/> |} ==See also== * [[Diffusion]] * [[List of thermodynamic properties]] ==References== {{Reflist}} {{Authority control}} {{DEFAULTSORT:Thermal Diffusivity}} [[Category:Thermodynamic properties]] [[Category:Heat transfer]] [[Category:Physical quantities]] [[Category:Heat conduction]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Authority control
(
edit
)
Template:CRC90
(
edit
)
Template:Cite book
(
edit
)
Template:Cite conference
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite web
(
edit
)
Template:Mvar
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)