Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Tietze extension theorem
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Continuous maps on a closed subset of a normal space can be extended}} [[File:Urysohn.jpeg|thumb | 220x124px | right | Pavel Urysohn]] In [[topology]], the '''[[Heinrich Tietze|Tietze]] extension theorem''' (also known as the '''Tietze–[[Pavel Urysohn|Urysohn]]–[[L. E. J. Brouwer|Brouwer]] extension theorem''' or '''Urysohn-Brouwer lemma'''<ref name="encyclopediaofmath">{{springer|title=Urysohn-Brouwer lemma|id=p/u095860}}</ref>) states that any [[Real-valued function|real-valued]], [[Continuous function (topology)|continuous function]] on a [[closed subset]] of a [[Normal space|normal]] [[topological space]] can be extended to the entire space, preserving boundedness if necessary. ==Formal statement== If <math>X</math> is a [[normal space]] and <math display=block>f : A \to \R</math> is a [[Continuous function (topology)|continuous]] map from a [[closed subset]] <math>A</math> of <math>X</math> into the [[real number]]s <math>\R</math> carrying the [[Euclidean topology|standard topology]], then there exists a {{em|[[continuous extension]]}} of <math>f</math> to <math>X;</math> that is, there exists a map <math display=block>F : X \to \R</math> continuous on all of <math>X</math> with <math>F(a) = f(a)</math> for all <math>a \in A.</math> Moreover, <math>F</math> may be chosen such that <math display=block>\sup \{|f(a)| : a \in A\} ~=~ \sup \{|F(x)| : x \in X\},</math> that is, if <math>f</math> is bounded then <math>F</math> may be chosen to be bounded (with the same bound as <math>f</math>). ==Proof== The function <math>F</math> is constructed iteratively. Firstly, we define <math display=block> \begin{align} c_0 &= \sup \{|f(a)|:a\in A\}\\ E_0 &= \{a\in A:f(a)\geq c_0/3\}\\ F_0 &=\{a\in A:f(a)\leq -c_0/3\}. \end{align} </math> Observe that <math>E_0</math> and <math>F_0</math> are [[closed set | closed]] and [[disjoint sets | disjoint]] subsets of <math>A</math>. By taking a linear combination of the function obtained from the proof of [[Urysohn's lemma]], there exists a [[continuous function]] <math>g_0:X\to \mathbb{R}</math> such that <math display=block> \begin{align} g_0 &= \frac{c_0}{3}\text{ on }E_0\\ g_0 &= -\frac{c_0}{3}\text{ on }F_0 \end{align} </math> and furthermore <math display=block>-\frac{c_0}{3}\leq g_0 \leq \frac{c_0}{3}</math> on <math>X</math>. In particular, it follows that <math display=block> \begin{align} |g_0| &\leq \frac{c_0}{3}\\ |f-g_0| &\leq \frac{2c_0}{3} \end{align}</math> on <math>A</math>. We now use [[mathematical induction | induction]] to construct a sequence of continuous functions <math>(g_n)_{n=0}^\infty</math> such that <math display=block> \begin{align} |g_n|&\leq \frac{2^nc_0}{3^{n+1}}\\ |f-g_0-...-g_{n}|&\leq \frac{2^{n+1}c_0}{3^{n+1}}. \end{align}</math> We've shown that this holds for <math>n=0</math> and assume that <math>g_0,...,g_{n-1}</math> have been constructed. Define <math display=block>c_{n-1} = \sup\{|f(a)-g_0(a)-...-g_{n-1}(a)|:a\in A\}</math> and repeat the above argument replacing <math>c_0</math> with <math>c_{n-1}</math> and replacing <math>f</math> with <math>f-g_0-...-g_{n-1}</math>. Then we find that there exists a continuous function <math>g_n:X\to \mathbb{R}</math> such that <math display=block> \begin{align} |g_n|&\leq \frac{c_{n-1}}{3}\\ |f-g_0-...-g_n|&\leq \frac{2c_{n-1}}{3}. \end{align} </math> By the inductive hypothesis, <math>c_{n-1}\leq 2^nc_0/3^n</math> hence we obtain the required identities and the induction is complete. Now, we define a continuous function <math>F_n:X\to \mathbb{R}</math> as <math display=block>F_n = g_0+...+g_n.</math> Given <math>n\geq m</math>, <math display=block> \begin{align} |F_n - F_m| &= |g_{m+1}+...+g_n|\\ &\leq \left(\left(\frac{2}{3}\right)^{m+1}+...+\left(\frac{2}{3}\right)^{n}\right)\frac{c_0}{3}\\ &\leq \left(\frac{2}{3}\right)^{m+1}c_0. \end{align} </math> Therefore, the sequence <math>(F_n)_{n=0}^\infty</math> is [[Cauchy sequence | Cauchy]]. Since the [[metric space | space]] of continuous functions on <math>X</math> together with the [[uniform norm | sup norm]] is a [[complete metric space]], it follows that there exists a continuous function <math>F:X\to \mathbb{R}</math> such that <math>F_n</math> [[uniform convergence | converges uniformly]] to <math>F</math>. Since <math display=block>|f-F_n|\leq \frac{2^{n}c_0}{3^{n+1}}</math> on <math>A</math>, it follows that <math>F=f</math> on <math>A</math>. Finally, we observe that <math display=block> |F_n|\leq \sum_{n=0}^\infty |g_n|\leq c_0 </math> hence <math>F</math> is bounded and has the same bound as <math>f</math>. <math>\square</math> ==History== [[L. E. J. Brouwer]] and [[Henri Lebesgue]] proved a special case of the theorem, when <math>X</math> is a finite-dimensional real [[vector space]]. [[Heinrich Tietze]] extended it to all [[metric space]]s, and [[Pavel Samuilovich Urysohn|Pavel Urysohn]] proved the theorem as stated here, for normal topological spaces.<ref>{{springer|title=Urysohn-Brouwer lemma|id=p/u095860}}</ref><ref>{{citation|first=Paul|last=Urysohn|author-link=Pavel Samuilovich Urysohn|journal=[[Mathematische Annalen]]|year=1925|volume=94|issue=1|pages=262–295|title=Über die Mächtigkeit der zusammenhängenden Mengen|doi=10.1007/BF01208659|hdl=10338.dmlcz/101038|hdl-access=free}}.</ref> ==Equivalent statements== This theorem is equivalent to [[Urysohn's lemma]] (which is also equivalent to the normality of the space) and is widely applicable, since all [[metric space]]s and all [[Compact space|compact]] [[Hausdorff space]]s are normal. It can be generalized by replacing <math>\R</math> with <math>\R^J</math> for some indexing set <math>J,</math> any retract of <math>\R^J,</math> or any normal [[Deformation retract#Retract|absolute retract]] whatsoever. ==Variations== If <math>X</math> is a metric space, <math>A</math> a non-empty subset of <math>X</math> and <math>f : A \to \R</math> is a [[Lipschitz continuous]] function with Lipschitz constant <math>K,</math> then <math>f</math> can be extended to a Lipschitz continuous function <math>F : X \to \R</math> with same constant <math>K.</math> This theorem is also valid for [[Hölder condition|Hölder continuous functions]], that is, if <math>f : A \to \R</math> is Hölder continuous function with constant less than or equal to <math>1,</math> then <math>f</math> can be extended to a Hölder continuous function <math>F : X \to \R</math> with the same constant.<ref>{{cite journal|last1=McShane|first1=E. J.|title=Extension of range of functions|journal=Bulletin of the American Mathematical Society|date=1 December 1934|volume=40|issue=12|pages=837–843|doi=10.1090/S0002-9904-1934-05978-0|doi-access=free}}</ref> Another variant (in fact, generalization) of Tietze's theorem is due to H.Tong and Z. Ercan:<ref name="Zaf:97">{{cite journal|last1=Zafer|first1=Ercan|title=Extension and Separation of Vector Valued Functions|journal=Turkish Journal of Mathematics|date=1997|volume=21|issue=4|pages=423–430|url=http://journals.tubitak.gov.tr/math/issues/mat-97-21-4/mat-21-4-4-e2104-04.pdf}}</ref> Let <math>A</math> be a closed subset of a normal topological space <math>X.</math> If <math>f : X \to \R</math> is an [[upper semicontinuous]] function, <math>g : X \to \R</math> a [[lower semicontinuous]] function, and <math>h : A \to \R</math> a continuous function such that <math>f(x) \leq g(x)</math> for each <math>x \in X</math> and <math>f(a) \leq h(a) \leq g(a)</math> for each <math>a \in A</math>, then there is a continuous extension <math>H : X \to \R</math> of <math>h</math> such that <math>f(x) \leq H(x) \leq g(x)</math> for each <math>x \in X.</math> This theorem is also valid with some additional hypothesis if <math>\R</math> is replaced by a general locally solid [[Riesz space]].<ref name="Zaf:97" /> Dugundji (1951) extends the theorem as follows: If <math>X</math> is a metric space, <math>Y</math> is a [[locally convex topological vector space]], <math>A</math> is a closed subset of <math>X</math> and <math>f:A\to Y</math> is continuous, then it could be extended to a continuous function <math>\tilde f</math> defined on all of <math>X</math>. Moreover, the extension could be chosen such that <math>\tilde f(X)\subseteq \text{conv} f(A)</math> ==See also== * {{annotated link|Blumberg theorem}} * {{annotated link|Hahn–Banach theorem}} * {{annotated link|Whitney extension theorem}} ==References== {{reflist}} * {{Munkres Topology|edition=2}} <!-- {{sfn|Munkres|2000|p=}} --> ==External links== * [[Eric W. Weisstein|Weisstein, Eric W.]] "[http://mathworld.wolfram.com/TietzesExtensionTheorem.html Tietze's Extension Theorem.]" From [[MathWorld]] * [[Mizar system]] proof: http://mizar.org/version/current/html/tietze.html#T23 * {{citation | first =Edmond| last =Bonan| title =Relèvements-Prolongements à valeurs dans les espaces de Fréchet| journal = Comptes Rendus de l'Académie des Sciences, Série I|volume =272| year =1971 | pages = 714–717}}. [[Category:Theory of continuous functions]] [[Category:Theorems in topology]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Annotated link
(
edit
)
Template:Citation
(
edit
)
Template:Cite journal
(
edit
)
Template:Em
(
edit
)
Template:Munkres Topology
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)
Template:Springer
(
edit
)