Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Toeplitz matrix
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Matrix with shifting rows}} In [[linear algebra]], a '''Toeplitz matrix''' or '''diagonal-constant matrix''', named after [[Otto Toeplitz]], is a [[matrix (mathematics)|matrix]] in which each descending diagonal from left to right is constant. For instance, the following matrix is a Toeplitz matrix: :<math>\qquad\begin{bmatrix} a & b & c & d & e \\ f & a & b & c & d \\ g & f & a & b & c \\ h & g & f & a & b \\ i & h & g & f & a \end{bmatrix}.</math> Any <math>n \times n</math> matrix <math>A</math> of the form :<math>A = \begin{bmatrix} a_0 & a_{-1} & a_{-2} & \cdots & \cdots & a_{-(n-1)} \\ a_1 & a_0 & a_{-1} & \ddots & & \vdots \\ a_2 & a_1 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & a_{-1} & a_{-2} \\ \vdots & & \ddots & a_1 & a_0 & a_{-1} \\ a_{n-1} & \cdots & \cdots & a_2 & a_1 & a_0 \end{bmatrix}</math> is a '''Toeplitz matrix'''. If the <math>i,j</math> element of <math>A</math> is denoted <math>A_{i,j}</math> then we have :<math>A_{i,j} = A_{i+1,j+1} = a_{i-j}.</math> A Toeplitz matrix is not necessarily [[Square matrix|square]]. ==Solving a Toeplitz system== A matrix equation of the form :<math>Ax = b</math> is called a '''Toeplitz system''' if <math>A</math> is a Toeplitz matrix. If <math>A</math> is an <math>n \times n</math> Toeplitz matrix, then the system has at most only <math>2n-1</math> unique values, rather than <math>n^2</math>. We might therefore expect that the solution of a Toeplitz system would be easier, and indeed that is the case. Toeplitz systems can be solved by algorithms such as the [[Schur class#Schur algorithm|Schur algorithm]] or the [[Levinson recursion|Levinson algorithm]] in [[Big O notation#Family of Bachmann–Landau notations|<math>O(n^2)</math>]] time.<ref>{{harvnb|Press| Teukolsky| Vetterling| Flannery| 2007 | loc= [http://apps.nrbook.com/empanel/index.html?pg=96 §2.8.2—Toeplitz matrices]}}</ref><ref>{{harvnb|Hayes|1996|loc=Chapter 5.2.6}}</ref> Variants of the latter have been shown to be weakly stable (i.e. they exhibit [[numerical stability]] for [[Condition number|well-conditioned]] [[system of linear equations|linear systems]]).<ref>{{harvnb|Krishna | Wang |1993}}</ref> The algorithms can also be used to find the [[determinant]] of a Toeplitz matrix in [[Big O notation|<math>O(n^2)</math>]] time.<ref>{{harvnb|Monahan |2011 | loc= §4.5—Toeplitz systems}}</ref> A Toeplitz matrix can also be decomposed (i.e. factored) in [[Big O notation|<math>O(n^2)</math> time]].<ref>{{harvnb|Brent |1999}}</ref> The Bareiss algorithm <!--this is not ''the'' [[Bareiss algorithm]] --> for an [[LU decomposition]] is stable.<ref>{{harvnb|Bojanczyk|Brent|de Hoog|Sweet| 1995}}</ref> An LU decomposition gives a quick method for solving a Toeplitz system, and also for computing the determinant. ==Properties== * An <math>n\times n</math> Toeplitz matrix may be defined as a matrix <math>A</math> where <math>A_{i,j}=c_{i-j}</math>, for constants <math>c_{1-n},\ldots,c_{n-1}</math>. The [[set (mathematics)|set]] of <math>n\times n</math> Toeplitz matrices is a [[linear subspace|subspace]] of the [[vector space]] of <math>n\times n</math> matrices (under matrix addition and scalar multiplication). * Two Toeplitz matrices may be added in <math>O(n)</math> time (by storing only one value of each diagonal) and [[matrix multiplication|multiplied]] in <math>O(n^2)</math> time. * Toeplitz matrices are [[persymmetric matrix|persymmetric]]. [[Symmetric matrix|Symmetric]] Toeplitz matrices are both [[centrosymmetric matrix|centrosymmetric]] and [[bisymmetric matrix|bisymmetric]]. * Toeplitz matrices are also closely connected with [[Fourier series]], because the [[multiplication operator]] by a [[trigonometric polynomial]], [[compression (functional analysis)|compressed]] to a finite-dimensional space, can be represented by such a matrix. Similarly, one can represent linear convolution as multiplication by a Toeplitz matrix. * Toeplitz matrices commute [[asymptotic analysis|asymptotically]]. This means they [[Diagonalizable matrix|diagonalize]] in the same [[basis (linear algebra)|basis]] when the row and column dimension tends to infinity. * For symmetric Toeplitz matrices, there is the decomposition ::<math>\frac{1}{a_0} A = G G^\operatorname{T} - (G - I)(G - I)^\operatorname{T}</math> :where <math>G</math> is the lower triangular part of <math>\frac{1}{a_0} A</math>. * The [[inverse matrix|inverse]] of a [[nonsingular matrix|nonsingular]] symmetric Toeplitz matrix has the representation ::<math>A^{-1} = \frac{1}{\alpha_0} (B B^\operatorname{T} - C C^\operatorname{T})</math> :where <math>B</math> and <math>C</math> are [[triangular matrix|lower triangular]] Toeplitz matrices and <math>C</math> is a strictly lower triangular matrix.<ref>{{harvnb|Mukherjee | Maiti |1988}}</ref> == Discrete convolution == The [[convolution]] operation can be constructed as a matrix multiplication, where one of the inputs is converted into a Toeplitz matrix. For example, the convolution of <math> h </math> and <math> x </math> can be formulated as: :<math> y = h \ast x = \begin{bmatrix} h_1 & 0 & \cdots & 0 & 0 \\ h_2 & h_1 & & \vdots & \vdots \\ h_3 & h_2 & \cdots & 0 & 0 \\ \vdots & h_3 & \cdots & h_1 & 0 \\ h_{m-1} & \vdots & \ddots & h_2 & h_1 \\ h_m & h_{m-1} & & \vdots & h_2 \\ 0 & h_m & \ddots & h_{m-2} & \vdots \\ 0 & 0 & \cdots & h_{m-1} & h_{m-2} \\ \vdots & \vdots & & h_m & h_{m-1} \\ 0 & 0 & 0 & \cdots & h_m \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix} </math> : <math> y^T = \begin{bmatrix} h_1 & h_2 & h_3 & \cdots & h_{m-1} & h_m \end{bmatrix} \begin{bmatrix} x_1 & x_2 & x_3 & \cdots & x_n & 0 & 0 & 0& \cdots & 0 \\ 0 & x_1 & x_2 & x_3 & \cdots & x_n & 0 & 0 & \cdots & 0 \\ 0 & 0 & x_1 & x_2 & x_3 & \ldots & x_n & 0 & \cdots & 0 \\ \vdots & & \vdots & \vdots & \vdots & & \vdots & \vdots & & \vdots \\ 0 & \cdots & 0 & 0 & x_1 & \cdots & x_{n-2} & x_{n-1} & x_n & 0 \\ 0 & \cdots & 0 & 0 & 0 & x_1 & \cdots & x_{n-2} & x_{n-1} & x_n \end{bmatrix}. </math> This approach can be extended to compute [[autocorrelation]], [[cross-correlation]], [[moving average]] etc. ==Infinite Toeplitz matrix== {{Main|Toeplitz operator}} A bi-infinite Toeplitz matrix (i.e. entries indexed by <math>\mathbb Z\times\mathbb Z</math>) <math>A</math> induces a [[linear operator]] on <math>\ell^2</math>. :<math> A=\begin{bmatrix} & \vdots & \vdots & \vdots & \vdots \\ \cdots & a_0 & a_{-1} & a_{-2} & a_{-3} & \cdots \\ \cdots & a_1 & a_0 & a_{-1} & a_{-2} & \cdots \\ \cdots & a_2 & a_1 & a_0 & a_{-1} & \cdots \\ \cdots & a_3 & a_2 & a_1 & a_0 & \cdots \\ & \vdots & \vdots & \vdots & \vdots \end{bmatrix}. </math> The induced operator is [[bounded operator|bounded]] if and only if the coefficients of the Toeplitz matrix <math>A</math> are the Fourier coefficients of some [[Essential range|essentially bounded]] function <math>f</math>. In such cases, <math>f</math> is called the '''symbol''' of the Toeplitz matrix <math>A</math>, and the spectral norm of the Toeplitz matrix <math>A</math> coincides with the <math>L^\infty</math> norm of its symbol. The [[mathematical proof|proof]] can be found as Theorem 1.1 of Böttcher and Grudsky.<ref>{{harvnb|Böttcher|Grudsky|2012}}</ref> ==See also== * [[Circulant matrix]], a square Toeplitz matrix with the additional property that <math>a_i=a_{i+n}</math> * [[Hankel matrix]], an "upside down" (i.e., row-reversed) Toeplitz matrix * {{annotated link|Szegő limit theorems}} * {{annotated link|Toeplitz operator}} ==Notes== {{Reflist}} ==References== {{refbegin}} *{{citation | last1 = Bojanczyk | first1 = A. W. | last2 = Brent | first2 = R. P. | last3 = de Hoog | first3 = F. R. | last4 = Sweet | first4 = D. R. | year = 1995 | title = On the stability of the Bareiss and related Toeplitz factorization algorithms | journal = [[SIAM Journal on Matrix Analysis and Applications]] | volume = 16 | pages = 40–57 | doi = 10.1137/S0895479891221563| arxiv = 1004.5510 | s2cid = 367586 }} *{{citation|first1=Albrecht| last1= Böttcher| first2=Sergei M. | last2= Grudsky|title=Toeplitz Matrices, Asymptotic Linear Algebra, and Functional Analysis|url=https://books.google.com/books?id=Dmr0BwAAQBAJ&pg=PA1|year=2012|publisher=Birkhäuser|isbn=978-3-0348-8395-5}} *{{citation | first= R. P. | last= Brent | author-link=Richard P. Brent | year= 1999 | contribution= Stability of fast algorithms for structured linear systems| title= Fast Reliable Algorithms for Matrices with Structure | editor1-first= T. | editor1-last= Kailath | editor2-first= A. H. | editor2-last=Sayed | publisher= [[Society for Industrial and Applied Mathematics|SIAM]] | pages=103–116|doi=10.1137/1.9781611971354.ch4| hdl= 1885/40746 | s2cid= 13905858 | hdl-access= free }} *{{citation|last1=Chan |first1=R. H.-F.| last2= Jin| first2= X.-Q. | year=2007 | title= An Introduction to Iterative Toeplitz Solvers | publisher= [[Society for Industrial and Applied Mathematics|SIAM]]|doi=10.1137/1.9780898718850|isbn=978-0-89871-636-8 }} *{{citation | last1 = Chandrasekeran | first1 = S. | last2 = Gu | first2 = M. | last3 = Sun | first3 = X. | last4 = Xia | first4 = J. | last5 = Zhu | first5 = J. | year = 2007 | title = A superfast algorithm for Toeplitz systems of linear equations | journal = [[SIAM Journal on Matrix Analysis and Applications]] | volume = 29 | issue = 4| pages = 1247–66 | doi = 10.1137/040617200| citeseerx = 10.1.1.116.3297 }} *{{citation | last1 = Chen | first1 = W. W. | last2 = Hurvich | first2 = C. M. | last3 = Lu | first3 = Y. | year = 2006 | title = On the correlation matrix of the discrete Fourier transform and the fast solution of large Toeplitz systems for long-memory time series | journal = [[Journal of the American Statistical Association]] | volume = 101 | issue = 474| pages = 812–822 | doi = 10.1198/016214505000001069| citeseerx = 10.1.1.574.4394 | s2cid = 55893963 }} *{{citation | last=Hayes | first=Monson H.|title= Statistical digital signal processing and modeling | year = 1996 | publisher = Wiley | isbn = 0-471-59431-8}} *{{citation | last1 = Krishna | first1 = H. | last2=Wang | first2= Y. | title = The Split Levinson Algorithm is weakly stable | journal = [[SIAM Journal on Numerical Analysis]] | volume = 30 | issue = 5 | pages = 1498–1508 | year = 1993 | url = http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=SJNAAM000030000005001498000001&idtype=cvips&gifs=yes | doi = 10.1137/0730078| url-access = subscription }} *{{citation| last=Monahan | first= J. F. | year=2011 | title=Numerical Methods of Statistics | publisher= [[Cambridge University Press]] |isbn=978-1-139-08211-2 |doi=10.1017/CBO9780511977176}} *{{citation| last1=Mukherjee | first1= Bishwa Nath | first2= Sadhan Samar | last2= Maiti | year= 1988 | title=On some properties of positive definite Toeplitz matrices and their possible applications | journal= [[Linear Algebra and Its Applications]] | volume= 102 | pages= 211–240 | doi= 10.1016/0024-3795(88)90326-6 | url= https://core.ac.uk/download/pdf/82070573.pdf| doi-access= free }} *{{citation|last1=Press | first1=W. H. | last2= Teukolsky | first2= S. A. | last3= Vetterling | first3= W. T. | last4= Flannery | first4= B. P. | year=2007 | title= Numerical Recipes: The Art of Scientific Computing | edition= 3rd | publisher= [[Cambridge University Press]] | isbn= 978-0-521-88068-8| title-link=Numerical Recipes }} *{{citation | last = Stewart | first = M. | year = 2003 | title = A superfast Toeplitz solver with improved numerical stability | journal = [[SIAM Journal on Matrix Analysis and Applications]] | volume = 25 | issue = 3| pages = 669–693 | doi = 10.1137/S089547980241791X | s2cid = 15717371 }} *{{citation | last1 = Yang | first1 = Zai | last2 = Xie | first2 = Lihua | last3 = Stoica | first3 = Petre | year = 2016 | title = Vandermonde decomposition of multilevel Toeplitz matrices with application to multidimensional super-resolution | journal = [[IEEE Transactions on Information Theory]] | volume = 62 | issue = 6 | pages = 3685–3701 | doi = 10.1109/TIT.2016.2553041 | arxiv = 1505.02510 | s2cid = 6291005 }} {{refend}} ==Further reading== {{refbegin}} *{{citation | last = Bareiss | first = E. H. | year = 1969 | title = Numerical solution of linear equations with Toeplitz and vector Toeplitz matrices | journal = [[Numerische Mathematik]] | volume = 13 | issue = 5| pages = 404–424 | doi = 10.1007/BF02163269 | s2cid = 121761517 }} *{{citation | first1= O. | last1= Goldreich | first2= A. | last2= Tal | author1-link= Oded Goldreich | title= Matrix rigidity of random Toeplitz matrices | journal= Computational Complexity | year= 2018 | volume= 27 | issue= 2 | pages= 305–350 | doi= 10.1007/s00037-016-0144-9 | s2cid= 253641700 }} *{{citation |author-link=Gene H. Golub |last=Golub |first=G. H. |author2-link=Charles F. Van Loan |last2=van Loan |first2=C. F. |date=1996 |title=Matrix Computations |publisher=[[Johns Hopkins University Press]] |at=§4.7—Toeplitz and Related Systems |isbn=0-8018-5413-X |oclc=34515797 }} *{{citation |last=Gray |first=R. M. |url=http://ee.stanford.edu/~gray/toeplitz.pdf |title=Toeplitz and Circulant Matrices: A Review |publisher=Now Publishers |doi=10.1561/0100000006}} *{{citation | last1 =Noor | first1 = F. | last2= Morgera | first2= S. D. | year = 1992 | title = Construction of a Hermitian Toeplitz matrix from an arbitrary set of eigenvalues | journal = [[IEEE Transactions on Signal Processing]] | volume = 40 | issue=8 | pages= 2093–4 | doi = 10.1109/78.149978 | bibcode= 1992ITSP...40.2093N }} *{{citation | title=Structured Matrices and Polynomials: unified superfast algorithms | first=Victor Y. | last=Pan | author-link=Victor Pan | publisher=[[Birkhäuser]] | year=2001 | isbn=978-0817642402 }} *{{citation| first1= Ke | last1= Ye |author2-link=Lek-Heng Lim | first2=Lek-Heng | last2= Lim | title= Every matrix is a product of Toeplitz matrices | journal= [[Foundations of Computational Mathematics#Publications|Foundations of Computational Mathematics]] | year= 2016 | volume=16 | issue= 3 | pages= 577–598 | doi= 10.1007/s10208-015-9254-z | arxiv= 1307.5132 | s2cid= 254166943 }} {{refend}} {{Matrix classes}} {{Authority control}} [[Category:Matrices (mathematics)]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Annotated link
(
edit
)
Template:Authority control
(
edit
)
Template:Citation
(
edit
)
Template:Harvnb
(
edit
)
Template:Main
(
edit
)
Template:Matrix classes
(
edit
)
Template:Refbegin
(
edit
)
Template:Refend
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)