Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Total relation
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Type of logical relation}} {{for|relations ''R'' where ''<nowiki>x=y</nowiki>'' or ''xRy'' or ''yRx'' for all ''x'' and ''y''|connected relation}} In [[mathematics]], a [[binary relation]] ''R'' ⊆ ''X''×''Y'' between two sets ''X'' and ''Y'' is '''total''' (or '''left total''') if the source set ''X'' equals the domain {''x'' : there is a ''y'' with ''xRy'' }. Conversely, ''R'' is called '''right total''' if ''Y'' equals the range {''y'' : there is an ''x'' with ''xRy'' }. When ''f'': ''X'' → ''Y'' is a [[function (mathematics)|function]], the domain of ''f'' is all of ''X'', hence ''f'' is a total relation. On the other hand, if ''f'' is a [[partial function]], then the domain may be a proper subset of ''X'', in which case ''f'' is not a total relation. "A binary relation is said to be total with respect to a universe of discourse just in case everything in that universe of discourse stands in that relation to something else."<ref>[http://caae.phil.cmu.edu/projects/logicandproofs/alpha/htmltest/m15_functions/chapter15.html Functions] from [[Carnegie Mellon University]]</ref> ==Algebraic characterization== Total relations can be characterized algebraically by equalities and inequalities involving [[composition of relations|compositions of relations]]. To this end, let <math>X,Y</math> be two sets, and let <math>R\subseteq X\times Y.</math> For any two sets <math>A,B,</math> let <math>L_{A,B}=A\times B</math> be the [[universal relation]] between <math>A</math> and <math>B,</math> and let <math>I_A=\{(a,a):a\in A\}</math> be the [[identity relation]] on <math>A.</math> We use the notation <math>R^\top</math> for the [[converse relation]] of <math>R.</math> * <math>R</math> is total iff for any set <math>W</math> and any <math>S\subseteq W\times X,</math> <math>S\ne\emptyset</math> implies <math>SR\ne\emptyset.</math><ref name=R&G>{{cite book|last1=Schmidt|first1=Gunther|last2=Ströhlein|first2=Thomas|title=Relations and Graphs: Discrete Mathematics for Computer Scientists|url={{google books |plainurl=y |id=ZgarCAAAQBAJ|paged=54}}|date=6 December 2012|publisher=[[Springer Science & Business Media]]|isbn=978-3-642-77968-8|author-link1=Gunther Schmidt}}</ref>{{rp|54}} * <math>R</math> is total iff <math>I_X\subseteq RR^\top.</math><ref name=R&G/>{{rp|54}} * If <math>R</math> is total, then <math>L_{X,Y}=RL_{Y,Y}.</math> The converse is true if <math>Y\ne\emptyset.</math><ref group=note>If <math>Y=\emptyset\ne X,</math> then <math>R</math> will be not total.</ref> * If <math>R</math> is total, then <math>\overline{RL_{Y,Y}}=\emptyset.</math> The converse is true if <math>Y\ne\emptyset.</math><ref group=note>Observe <math>\overline{RL_{Y,Y}}=\emptyset\Leftrightarrow RL_{Y,Y}=L_{X,Y},</math> and apply the previous bullet.</ref><ref name=R&G/>{{rp|63}} * If <math>R</math> is total, then <math>\overline R\subseteq R\overline{I_Y}.</math> The converse is true if <math>Y\ne\emptyset.</math><ref name=R&G/>{{rp|54}}<ref name=GS11>{{cite book | doi=10.1017/CBO9780511778810 | isbn=9780511778810 | author=Gunther Schmidt | title=Relational Mathematics | publisher=[[Cambridge University Press]] | year=2011 }} Definition 5.8, page 57.</ref> * More generally, if <math>R</math> is total, then for any set <math>Z</math> and any <math>S\subseteq Y\times Z,</math> <math>\overline{RS}\subseteq R\overline S.</math> The converse is true if <math>Y\ne\emptyset.</math><ref group=note>Take <math>Z=Y,S=I_Y</math> and appeal to the previous bullet.</ref><ref name=R&G/>{{rp|57}} ==See also== * [[Serial relation]] — a total homogeneous relation ==Notes== {{reflist|group=note}} ==References== {{reflist}} * [[Gunther Schmidt]] & Michael Winter (2018) ''Relational Topology'' * C. Brink, W. Kahl, and G. Schmidt (1997) ''Relational Methods in Computer Science'', Advances in Computer Science, page 5, {{ISBN|3-211-82971-7}} * Gunther Schmidt & Thomas Strohlein (2012)[1987] {{Google books|ZgarCAAAQBAJ|Relations and Graphs|page=54}} * Gunther Schmidt (2011) {{Google books|E4REBTs5WsC|Relational Mathematics|page=57}} {{Order theory}} [[Category:Properties of binary relations]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Cite book
(
edit
)
Template:For
(
edit
)
Template:Google books
(
edit
)
Template:ISBN
(
edit
)
Template:Order theory
(
edit
)
Template:Reflist
(
edit
)
Template:Rp
(
edit
)
Template:Short description
(
edit
)