Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Trapezoidal rule
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{short description|Numerical integration method}} {{About|a rule for approximating integrals|the trapezoidal rule used for initial value problems|Trapezoidal rule (differential equations)|and|Heun's method}} [[File:Trapezoidal rule illustration.svg|right|thumb|The function ''f''(''x'') (in blue) is approximated by a linear function (in red).]] In [[calculus]], the '''trapezoidal rule''' (or '''trapezium rule''' in [[British English]]){{efn|See [[Trapezoid]] for more information on terminology.}} is a technique for [[numerical integration]], i.e., approximating the [[integral|definite integral]]: <math display="block">\int_a^b f(x) \, dx.</math> The trapezoidal rule works by approximating the region under the graph of the function <math>f(x)</math> as a [[trapezoid]] and calculating its area. It follows that <math display="block">\int_{a}^{b} f(x) \, dx \approx (b-a) \cdot \tfrac{1}{2}(f(a)+f(b)).</math> [[File:WikiTrap.gif|thumb|right|An animation that shows what the trapezoidal rule is and how the error in approximation decreases as the step size decreases]] The integral can be even better approximated by [[Partition of an interval|partitioning the integration interval]], applying the trapezoidal rule to each subinterval, and summing the results. In practice, this "chained" (or "composite") trapezoidal rule is usually what is meant by "integrating with the trapezoidal rule". Let <math>\{x_k\}</math> be a partition of <math>[a,b]</math> such that <math>a=x_0 < x_1 < \cdots < x_{N-1} < x_N = b</math> and <math>\Delta x_k</math> be the length of the <math>k</math>-th subinterval (that is, <math>\Delta x_k = x_k - x_{k-1}</math>), then <math display="block">\int_a^b f(x) \, dx \approx \sum_{k=1}^N \frac{f(x_{k-1}) + f(x_k)}{2} \Delta x_k.</math> The trapezoidal rule may be viewed as the result obtained by averaging the [[Riemann sum#Types of Riemann sums|left and right Riemann sums]], and is sometimes defined this way. The approximation becomes more accurate as the resolution of the partition increases (that is, for larger <math>N</math>, all <math>\Delta x_k</math> decrease). When the partition has a regular spacing, as is often the case, that is, when all the <math>\Delta x_k</math> have the same value <math>\Delta x,</math> the formula can be simplified for calculation efficiency by factoring <math>\Delta x</math> out:. <math display="block">\int_a^b f(x) \, dx \approx \Delta x \left(\frac{f(x_0) + f(x_N)} 2 + \sum_{k=1}^{n-1} f(x_k) \right).</math> As discussed below, it is also possible to place error bounds on the accuracy of the value of a definite integral estimated using a trapezoidal rule. [[File:Integration num trapezes notation.svg|thumb|Illustration of "chained trapezoidal rule" used on an irregularly-spaced partition of <math>[a,b]</math>.]] == History == A 2016 ''[[Science (journal)|Science]]'' paper reports that the trapezoid rule was in use in [[Babylon]] before 50 BCE for integrating the velocity of [[Jupiter]] along the [[ecliptic]].<ref>{{cite journal |last=Ossendrijver |first=Mathieu |date=Jan 29, 2016 |title=Ancient Babylonian astronomers calculated Jupiter's position from the area under a time-velocity graph |journal=Science |doi=10.1126/science.aad8085 |pmid=26823423 |volume=351 |issue=6272 |pages=482–484 |bibcode=2016Sci...351..482O |s2cid=206644971 |url=https://www.science.org/doi/full/10.1126/science.aad8085}}</ref><ref>{{Cite news |date=2016-01-29 |title=Ancient Babylonians 'first to use geometry' |url=https://www.bbc.com/news/science-environment-35431974 |access-date=2025-02-13 |work=BBC News |language=en-GB}}</ref> == Numerical implementation == === Non-uniform grid === When the grid spacing is non-uniform, one can use the formula <math display="block"> \int_{a}^{b} f(x)\, dx \approx \sum_{k=1}^N \frac{f(x_{k-1}) + f(x_k)}{2} \Delta x_k ,</math> wherein <math>\Delta x_k = x_{k} - x_{k-1} .</math> === Uniform grid === For a domain partitioned by <math>N</math> equally spaced points, considerable simplification may occur. Let <math display=inline> \Delta x = \frac{b-a}{N},</math> and <math>x_k=a+k \Delta x</math> for {{tmath|1=k=0,1,\ldots, N}}. The approximation to the integral becomes <math display="block">\begin{align} \int_{a}^{b} f(x)\, dx \approx \frac{\Delta x}{2}& \sum_{k=1}^{N} \left( f(x_{k-1}) + f(x_{k}) \right) \\[1ex] &= \Delta x \left( \frac{f(x_N) + f(x_0) }{2} + \sum_{k=1}^{N-1} f(x_k) \right) . \end{align}</math> ==Error analysis== [[File:Trapezium2.gif|right|thumb|An animation showing how the trapezoidal rule approximation improves with more strips for an interval with <math>a=2</math> and <math>b=8</math>. As the number of intervals <math>N</math> increases, so too does the accuracy of the result.]] The error of the composite trapezoidal rule is the difference between the value of the integral and the numerical result: <math display="block"> \text{E} = \int_a^b f(x)\,dx - \frac{b-a}{N} \left[ {f(a) + f(b) \over 2} + \sum_{k=1}^{N-1} f \left( a+k \frac{b-a}{N} \right) \right]</math> There exists a number ''ξ'' between ''a'' and ''b'', such that<ref>{{harvtxt|Atkinson|1989|loc=equation (5.1.7)}}</ref> <math display="block"> \text{E} = -\frac{(b-a)^3}{12N^2} f''(\xi)</math> It follows that if the integrand is [[concave up]] (and thus has a positive second derivative), then the error is negative and the trapezoidal rule overestimates the true value. This can also be seen from the geometric picture: the trapezoids include all of the area under the curve and extend over it. Similarly, a [[concave-down]] function yields an underestimate because area is unaccounted for under the curve, but none is counted above. If the interval of the integral being approximated includes an [[inflection point]], the sign of the error is harder to identify. An asymptotic error estimate for ''N'' → ∞ is given by <math display="block"> \text{E} = -\frac{(b-a)^2}{12N^2} \big[ f'(b)-f'(a) \big] + O(N^{-3}). </math> Further terms in this error estimate are given by the Euler–Maclaurin summation formula. Several techniques can be used to analyze the error, including:<ref name="w0223">{{Harv|Weideman|2002|loc=p. 23, section 2}}</ref> #[[Fourier series]] #[[Residue calculus]] #[[Euler–Maclaurin summation formula]]<ref>{{harvtxt|Atkinson|1989|loc=equation (5.1.9)}}</ref><ref>{{harvtxt|Atkinson|1989|loc=p. 285}}</ref> #[[Polynomial interpolation]]<ref>{{harvtxt|Burden|Faires|2011|p=194}} </ref> It is argued that the speed of convergence of the trapezoidal rule reflects and can be used as a definition of classes of smoothness of the functions.<ref name="rs90" /> === Proof === First suppose that <math>h=\frac{b-a}{N}</math> and <math>a_k=a+(k-1)h</math>. Let <math display="block"> g_k(t) = \frac{1}{2} t[f(a_k)+f(a_k+t)] - \int_{a_k}^{a_k+t} f(x) \, dx</math> be the function such that <math> |g_k(h)| </math> is the error of the trapezoidal rule on one of the intervals, <math> [a_k, a_k+h] </math>. Then <math display="block"> {dg_k \over dt}={1 \over 2}[f(a_k)+f(a_k+t)]+{1\over2}t\cdot f'(a_k+t)-f(a_k+t),</math> and <math display="block"> {d^2g_k \over dt^2}={1\over 2}t\cdot f''(a_k+t).</math> Now suppose that <math> \left| f''(x) \right| \leq \left| f''(\xi) \right|, </math> which holds if <math> f </math> is sufficiently smooth. It then follows that <math display="block"> \left| f''(a_k+t) \right| \leq f''(\xi)</math> which is equivalent to <math> -f''(\xi) \leq f''(a_k+t) \leq f''(\xi)</math>, or <math> -\frac{f''(\xi)t}{2} \leq g_k''(t) \leq \frac{f''(\xi)t}{2}.</math> Since <math> g_k'(0)=0</math> and <math> g_k(0)=0</math>, <math display="block"> \int_0^t g_k''(x) dx = g_k'(t)</math> and <math display="block"> \int_0^t g_k'(x) dx = g_k(t).</math> Using these results, we find <math display="block"> -\frac{f''(\xi)t^2}{4} \leq g_k'(t) \leq \frac{f''(\xi)t^2}{4}</math> and <math display="block"> -\frac{f''(\xi)t^3}{12} \leq g_k(t) \leq \frac{f''(\xi)t^3}{12}</math> Letting <math> t = h </math> we find <math display="block"> -\frac{f''(\xi)h^3}{12} \leq g_k(h) \leq \frac{f''(\xi)h^3}{12}.</math> Summing all of the local error terms we find <math display="block"> \sum_{k=1}^{N} g_k(h) = \frac{b-a}{N} \left[ {f(a) + f(b) \over 2} + \sum_{k=1}^{N-1} f \left( a+k \frac{b-a}{N} \right) \right] - \int_a^b f(x)dx.</math> But we also have <math display="block"> - \sum_{k=1}^N \frac{f''(\xi)h^3}{12} \leq \sum_{k=1}^N g_k(h) \leq \sum_{k=1}^N \frac{f''(\xi)h^3}{12}</math> and <math display="block"> \sum_{k=1}^N \frac{f''(\xi)h^3}{12}=\frac{f''(\xi)h^3N}{12},</math> so that <math display="block"> -\frac{f''(\xi)h^3N}{12} \leq \frac{b-a}{N} \left[ {f(a) + f(b) \over 2} + \sum_{k=1}^{N-1} f \left( a+k \frac{b-a}{N} \right) \right]-\int_a^bf(x)dx \leq \frac{f''(\xi)h^3N}{12}.</math> Therefore the total error is bounded by <math display="block"> \text{error} = \int_a^b f(x)\,dx - \frac{b-a}{N} \left[ {f(a) + f(b) \over 2} + \sum_{k=1}^{N-1} f \left( a+k \frac{b-a}{N} \right) \right] = \frac{f''(\xi)h^3N}{12}=\frac{f''(\xi)(b-a)^3}{12N^2}.</math> === Periodic and peak functions === The trapezoidal rule converges rapidly for periodic functions. This is an easy consequence of the [[Euler-Maclaurin summation formula]], which says that if <math>f</math> is <math>p</math> times continuously differentiable with period <math>T</math> <math display="block">\sum_{k=0}^{N-1} f(kh)h = \int_0^T f(x)\,dx + \sum_{k=1}^{\lfloor p/2\rfloor} \frac{B_{2k}}{(2k)!} (f^{(2k - 1)}(T) - f^{(2k - 1)}(0)) - (-1)^p h^p \int_0^T\tilde{B}_{p}(x/T)f^{(p)}(x) \, dx </math> where <math>h:=T/N</math> and <math>\tilde{B}_{p}</math> is the periodic extension of the <math>p</math>th Bernoulli polynomial.<ref>{{cite book|title=Numerical Analysis, volume 181 of Graduate Texts in Mathematics|first=Rainer|last=Kress |year=1998 |publisher=Springer-Verlag}}</ref> Due to the periodicity, the derivatives at the endpoint cancel and we see that the error is <math>O(h^p)</math>. A similar effect is available for peak-like functions, such as [[Gaussian function|Gaussian]], [[Exponentially modified Gaussian distribution|Exponentially modified Gaussian]] and other functions with derivatives at integration limits that can be neglected.<ref>{{Cite journal |last=Goodwin|first=E. T. |date=1949 |title=The evaluation of integrals of the form <math>\textstyle\int_{-\infty}^\infty{f(x)e^{-x^2}dx}</math> | journal=[[Mathematical Proceedings of the Cambridge Philosophical Society]] |language=en |volume=45 |issue=2 |pages=241–245 |doi=10.1017/S0305004100024786 |bibcode=1949PCPS...45..241G |issn=1469-8064}}</ref> The evaluation of the full integral of a Gaussian function by trapezoidal rule with 1% accuracy can be made using just 4 points.<ref name=":0">{{Cite journal| last1=Kalambet|first1=Yuri |last2=Kozmin|first2=Yuri |last3=Samokhin|first3=Andrey |date=2018 |title=Comparison of integration rules in the case of very narrow chromatographic peaks |journal=Chemometrics and Intelligent Laboratory Systems|volume=179 |pages=22–30 |doi=10.1016/j.chemolab.2018.06.001|issn=0169-7439}}</ref> [[Simpson's rule]] requires 1.8 times more points to achieve the same accuracy.<ref name=":0" /><ref name="w02" /> === "Rough" functions === For functions that are not in [[Smoothness|''C''<sup>2</sup>]], the error bound given above is not applicable. Still, error bounds for such rough functions can be derived, which typically show a slower convergence with the number of function evaluations <math>N</math> than the <math>O(N^{-2})</math> behaviour given above. Interestingly, in this case the trapezoidal rule often has sharper bounds than [[Simpson's rule]] for the same number of function evaluations.<ref name="cun02" /> == Applicability and alternatives == The trapezoidal rule is one of a family of formulas for [[numerical integration]] called [[Newton–Cotes formulas]], of which the [[midpoint rule]] is similar to the trapezoid rule. [[Simpson's rule]] is another member of the same family, and in general has faster convergence than the trapezoidal rule for functions which are twice continuously differentiable, though not in all specific cases. However, for various classes of rougher functions (ones with weaker smoothness conditions), the trapezoidal rule has faster convergence in general than Simpson's rule.<ref name="cun02">{{Harv|Cruz-Uribe|Neugebauer|2002}}</ref> Moreover, the trapezoidal rule tends to become extremely accurate when [[periodic function]]s are integrated over their periods, which can be [[#Periodic and peak functions|analyzed in various ways]].<ref name="rs90">{{Harv|Rahman|Schmeisser|1990}}</ref><ref name="w02">{{Harv|Weideman|2002}}</ref> A similar effect is available for peak functions.<ref name=":0" /><ref name="w02" /> For non-periodic functions, however, methods with unequally spaced points such as [[Gaussian quadrature]] and [[Clenshaw–Curtis quadrature]] are generally far more accurate; Clenshaw–Curtis quadrature can be viewed as a change of variables to express arbitrary integrals in terms of periodic integrals, at which point the trapezoidal rule can be applied accurately. ==Example== The following integral is given: <math display="block"> \int_{0.1}^{1.3}{5xe^{- 2x}{dx}} </math> {{ordered list| list-style-type = lower-alpha | Use the composite trapezoidal rule to estimate the value of this integral. Use three segments. | Find the true error <math display="inline"> E_{t} </math> for part (a). | Find the absolute relative true error <math display="inline"> \left| \varepsilon_{t} \right| </math> for part (a). }} '''Solution''' {{ordered list| list-style-type = lower-alpha | The solution using the composite trapezoidal rule with 3 segments is applied as follows. <math display="block"> \int_{a}^{b}{f(x){dx}} \approx \frac{b - a}{2n}\left\lbrack f(a) + 2\sum_{i = 1}^{n - 1}{f(a + {ih})} + f(b) \right\rbrack </math> <math display="block">\begin{align} n &= 3 \\ a &= 0.1 \\ b &= 1.3 \\ h &= \frac{b - a}{n} = \frac{1.3 - 0.1}{3} = 0.4 \end{align} </math> Using the composite trapezoidal rule formula <math display="block"> \begin{align} \int_a^b {f(x){dx}} \approx \frac{b - a}{2n} \left\lbrack f(a) + 2\left\{ \sum_{i = 1}^{n - 1}{f(a + {ih})} \right\} + f(b) \right\rbrack\;\;\;\;\;\;\;\;\;\;\;\; (3) \end{align} </math> <math display="block"> \begin{align} I &\approx \frac{1.3 - 0.1}{6}\left\lbrack f(0.1) + 2\sum_{i = 1}^{3 - 1}{f(0.1 + 0.4i)} + f(1.3) \right\rbrack\\ I &\approx \frac{1.3 - 0.1}{6}\left\lbrack f(0.1) + 2\sum_{i = 1}^{2}{f(0.1 + 0.4i)} + f(1.3) \right\rbrack\\ &= 0.2\lbrack f(0.1) + 2f(0.5) + 2f(0.9) + f(1.3)\rbrack\\ &= 0.2[5 \times 0.1 \times e^{- 2(0.1)}+2(5 \times 0.5 \times e^{- 2(0.5)})+2(5 \times 0.9 \times e^{- 2(0.9)}) + 5 \times 1.3 \times e^{- 2(1.3)}\rbrack\\ &= 0.84385 \end{align} </math> | The exact value of the above integral can be found by integration by parts and is <math display="block"> \int_{0.1}^{1.3} 5xe^{- 2x}{dx} = 0.89387 </math> So the true error is <math display="block"> \begin{align} E_{t} &= \text{True Value} - \text{Approximate Value}\\ &= 0.89387 - 0.84385\\ &= 0.05002 \end{align} </math> | The absolute relative true error is <math display="block"> \displaystyle \begin{align}\left| \varepsilon_{t} \right| &= \left| \frac{\text{True Error}}{\text{True Value}} \right| \times 100\%\\ &= \left| \frac{0.05002}{0.89387} \right| \times 100\%\\ &= 5.5959\% \end{align} </math> }} ==See also== * [[Gaussian quadrature]] * [[Newton–Cotes formulas]] * [[Rectangle method]] * [[Romberg's method]] * [[Simpson's rule]] * [[Tai's model]] * {{slink|Volterra integral equation#Numerical Solution using Trapezoidal Rule}} ==Notes== {{notelist}} <references/> ==References== {{refbegin}} *{{citation |last=Atkinson |first=Kendall E. |year=1989 |title=An Introduction to Numerical Analysis |edition=2nd |publisher=[[John Wiley & Sons]] |location=New York |isbn=978-0-471-50023-0}} *{{citation |last1=Rahman |first1=Qazi I. |last2=Schmeisser |first2=Gerhard |date=December 1990 |title=Characterization of the speed of convergence of the trapezoidal rule |journal=Numerische Mathematik |issn=0945-3245 |doi=10.1007/BF01386402 |volume=57 |issue=1 |pages=123–138|s2cid=122245944 }} *{{citation |last1=Burden |first1=Richard L. |last2=Faires |first2=J. Douglas |year=2011|title=Numerical Analysis |edition=9th |publisher=Brooks/Cole }} *{{citation |last=Weideman |first=J. A. C. |date=January 2002 |title=Numerical Integration of Periodic Functions: A Few Examples |journal=[[The American Mathematical Monthly]] |doi=10.2307/2695765 |jstor=2695765 |volume=109 |issue=1 |pages=21–36}} *{{citation |last1=Cruz-Uribe |first1=D. |last2=Neugebauer |first2=C. J. |year=2002 |title=Sharp Error Bounds for the Trapezoidal Rule and Simpson's Rule |journal=Journal of Inequalities in Pure and Applied Mathematics |volume=3 |issue=4 |url=http://www.emis.de/journals/JIPAM/images/031_02_JIPAM/031_02.pdf }} {{refend}} ==External links== {{wikibooks|A-level Mathematics|C2/Integration#Trapezium Rule|Trapezium Rule}} *[http://www.encyclopediaofmath.org/index.php?title=Trapezium_formula&oldid=12696 Trapezium formula. I.P. Mysovskikh], ''Encyclopedia of Mathematics'', ed. M. Hazewinkel *[http://dedekind.mit.edu/~stevenj/trapezoidal.pdf Notes on the convergence of trapezoidal-rule quadrature] *[http://www.boost.org/doc/libs/1_66_0/libs/math/doc/html/math_toolkit/trapezoidal.html An implementation of trapezoidal quadrature provided by Boost.Math] {{Numerical integration}} {{Calculus topics}} [[Category:Numerical integration]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:About
(
edit
)
Template:Calculus topics
(
edit
)
Template:Citation
(
edit
)
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite news
(
edit
)
Template:Efn
(
edit
)
Template:Harv
(
edit
)
Template:Harvtxt
(
edit
)
Template:Notelist
(
edit
)
Template:Numerical integration
(
edit
)
Template:Ordered list
(
edit
)
Template:Refbegin
(
edit
)
Template:Refend
(
edit
)
Template:Short description
(
edit
)
Template:Slink
(
edit
)
Template:Tmath
(
edit
)
Template:Wikibooks
(
edit
)