Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Triangular hebesphenorotunda
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|92nd Johnson solid (20 faces)}} {{Infobox polyhedron |image=Triangular hebesphenorotunda.png |type=[[Johnson solid|Johnson]]<br>{{math|[[bilunabirotunda|''J''{{sub|91}}]] β '''''J''{{sub|92}}''' β [[square pyramid|''J''{{sub|1}}]]}} |faces=13 [[triangle]]s <br> 3 [[Square (geometry)|square]]s <br> 3 [[pentagon]]s <br> 1 [[hexagon]] |edges=36 |vertices=18 |symmetry={{math|C{{sub|3v}}}} |vertex_config= {{math|3(3{{sup|3}}.5) <br> 6(3.4.3.5) <br> 3(3.5.3.5) <br> 2.3(3{{sup|2}}.4.6)}} |dual=- |properties=[[convex set|convex]], [[Elementary polyhedron|elementary]] |net=Johnson solid 92 net.png }} [[File:J92 triangular hebesphenorotunda.stl|thumb|3D model of a triangular hebesphenorotunda]] In [[geometry]], the '''triangular hebesphenorotunda''' is a [[Johnson solid]] with 13 [[equilateral triangle]]s, 3 [[Square (geometry)|square]]s, 3 [[regular pentagon]]s, and 1 [[regular hexagon]], meaning the total of its faces is 20. == Properties == The triangular hebesphenorotunda is named by {{harvtxt|Johnson|1966}}, with the prefix ''hebespheno-'' referring to a blunt wedge-like complex formed by three adjacent ''lunes''—a figure where two equilateral triangles are attached at the opposite sides of a square. The suffix (triangular) ''-rotunda'' refers to the complex of three equilateral triangles and three regular pentagons surrounding another equilateral triangle, which bears a structural resemblance to the [[pentagonal rotunda]].{{r|johnson}} Therefore, the triangular hebesphenorotunda has 20 faces: 13 [[equilateral triangle]]s, 3 [[Square (geometry)|square]]s, 3 [[regular pentagon]]s, and 1 [[regular hexagon]].{{r|berman}} The faces are all [[regular polygon]]s, categorizing the triangular hebesphenorotunda as a [[Johnson solid]], enumerated the last one <math> J_{92} </math>.{{r|francis}} It is an [[elementary polyhedra|elementary polyhedron]], meaning that it cannot be separated by a plane into two small regular-faced polyhedra.{{r|cromwell}} The [[surface area]] of a triangular hebesphenorotunda of edge length <math> a </math> as:{{r|berman}} <math display="block"> A = \left(3+\frac{1}{4}\sqrt{1308+90\sqrt{5}+114\sqrt{75+30\sqrt{5}}}\right)a^2 \approx 16.389a^2, </math> and its [[volume]] as:{{r|berman}} <math display="block"> V = \frac{1}{6}\left(15+7\sqrt{5}\right)a^3\approx5.10875a^3. </math> == Cartesian coordinates == The triangular hebesphenorotunda with edge length <math> \sqrt{5} - 1 </math> can be constructed by the union of the orbits of the [[Cartesian coordinate]]s: <math display="block"> \begin{align} \left( 0,-\frac{2}{\tau\sqrt{3}},\frac{2\tau}{\sqrt{3}} \right), \qquad &\left( \tau,\frac{1}{\sqrt{3}\tau^2},\frac{2}{\sqrt{3}} \right) \\ \left( \tau,-\frac{\tau}{\sqrt{3}},\frac{2}{\sqrt{3}\tau} \right), \qquad &\left(\frac{2}{\tau},0,0\right), \end{align} </math> under the action of the [[Symmetry group|group]] generated by rotation by 120Β° around the z-axis and the reflection about the yz-plane. Here, <math> \tau </math> denotes the [[golden ratio]].{{r|timofeenko}} == References == {{reflist|refs= <ref name="berman">{{citation | last = Berman | first = M. | doi = 10.1016/0016-0032(71)90071-8 | journal = Journal of the Franklin Institute | mr = 290245 | pages = 329β352 | title = Regular-faced convex polyhedra | volume = 291 | year = 1971| issue = 5 }}.</ref> <ref name="cromwell">{{citation | last = Cromwell | first = P. R. | title = Polyhedra | year = 1997 | url = https://archive.org/details/polyhedra0000crom/page/87/mode/1up | publisher = [[Cambridge University Press]] | isbn = 978-0-521-66405-9 | page = 86–87, 89 }}.</ref> <ref name="francis">{{citation | last = Francis | first = D. | title = Johnson solids & their acronyms | journal = Word Ways | date = August 2013 | volume = 46 | issue = 3 | page = 177 | url = https://go.gale.com/ps/i.do?id=GALE%7CA340298118 }}.</ref> <ref name="johnson">{{citation | last = Johnson | first = N. W. | author-link = Norman Johnson (mathematician) | title = Convex polyhedra with regular faces | journal = [[Canadian Journal of Mathematics]] | volume = 18 | pages = 169β200 | year = 1966 | doi = 10.4153/cjm-1966-021-8|mr=0185507 | zbl = 0132.14603 | s2cid = 122006114 | doi-access = free }}.</ref> <ref name="timofeenko">{{citation | last = Timofeenko | first = A. V. | year = 2009 | title = The non-Platonic and non-Archimedean noncomposite polyhedra | journal = Journal of Mathematical Science | volume = 162 | issue = 5 | pages = 717 | doi = 10.1007/s10958-009-9655-0 | s2cid = 120114341 }}.</ref> }} ==External links== * {{Mathworld2 | urlname2 = JohnsonSolid | title2 = Johnson solid | urlname =TriangularHebesphenorotunda| title = Triangular hebesphenorotunda}} {{Johnson solids navigator}} [[Category:Elementary polyhedron]] [[Category:Johnson solids]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Harvtxt
(
edit
)
Template:Infobox
(
edit
)
Template:Infobox polyhedron
(
edit
)
Template:Johnson solids navigator
(
edit
)
Template:Mathworld2
(
edit
)
Template:R
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)
Template:Template other
(
edit
)