Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Trigonometric polynomial
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Concept in mathematics}} In the [[mathematical]] subfields of [[numerical analysis]] and [[mathematical analysis]], a '''trigonometric polynomial''' is a finite [[linear combination]] of [[Function (mathematics)|functions]] sin(''nx'') and cos(''nx'') with ''n'' taking on the values of one or more [[natural number]]s. The coefficients may be taken as real numbers, for real-valued functions. For [[complex number|complex coefficients]], there is no difference between such a function and a finite [[Fourier series]]. Trigonometric polynomials are widely used, for example in [[trigonometric interpolation]] applied to the [[interpolation]] of [[periodic function]]s. They are used also in the [[discrete Fourier transform]]. The term ''trigonometric polynomial'' for the real-valued case can be seen as using the [[analogy]]: the functions sin(''nx'') and cos(''nx'') are similar to the [[monomial basis]] for [[polynomial]]s. In the complex case the trigonometric polynomials are spanned by the positive and negative powers of <math>e^{ix}</math>, i.e., [[Laurent polynomial]]s in <math>z </math> under the [[change of variables]] <math>x \mapsto z := e^{ix}</math>. ==Definition== Any function ''T'' of the form <math display="block">T(x) = a_0 + \sum_{n=1}^N a_n \cos (nx) + \sum_{n=1}^N b_n \sin(nx) \qquad (x \in \mathbb{R})</math> with coefficients <math>a_n, b_n \in \mathbb{C}</math> and at least one of the highest-degree coefficients <math>a_N</math> and <math>b_N</math> non-zero, is called a ''complex trigonometric polynomial'' of degree ''N''.<ref>{{harvnb|Rudin|1987|p=88}}</ref> Using [[Euler's formula]] the polynomial can be rewritten as <math display="block">T(x) = \sum_{n=-N}^N c_n e^{inx} \qquad (x \in \mathbb{R}).</math> with <math>c_{n}\in\mathbb{C}</math>. Analogously, letting coefficients <math>a_n, b_n \in \mathbb{R}</math>, and at least one of <math>a_N</math> and <math>b_N</math> non-zero or, equivalently, <math>c_n \in \mathbb{R}</math> and <math>c_n = \bar{c}_{-n}</math> for all <math>n\in[-N,N]</math>, then <math display="block">t(x) = a_0 + \sum_{n=1}^N a_n \cos (nx) + \sum_{n=1}^N b_n \sin(nx) \qquad (x \in \mathbb{R})</math> is called a ''real trigonometric polynomial'' of degree ''N''.{{sfn|Powell|1981|p=150}}{{sfn | Hussen | Zeyani | 2021}} ==Properties== A trigonometric polynomial can be considered a [[periodic function]] on the [[real line]], with [[Periodic function|period]] some divisor of {{tmath|2\pi}}, or as a function on the [[unit circle]]. Trigonometric polynomials are [[dense set|dense]] in the space of [[continuous function]]s on the unit circle, with the [[uniform norm]];<ref>{{harvnb|Rudin|1987|loc=Thm 4.25}}</ref> this is a special case of the [[Stone–Weierstrass theorem]]. More concretely, for every continuous function {{tmath|f}} and every {{tmath|\epsilon > 0}} there exists a trigonometric polynomial {{tmath|T}} such that <math>|f(z) - T(z)| < \epsilon</math> for all {{tmath|z}}. [[Fejér's theorem]] states that the arithmetic means of the partial sums of the [[Fourier series]] of {{tmath|f}} converge uniformly to {{tmath|f}} provided {{tmath|f}} is continuous on the circle; these partial sums can be used to approximate {{tmath|f}}. A trigonometric polynomial of degree {{tmath|N}} has a maximum of {{tmath|2N}} roots in a real interval {{tmath|[a, a+2\pi)}} unless it is the zero function.<ref>{{harvnb|Powell|1981|p=150}}</ref> == Fejér-Riesz theorem == The Fejér-Riesz theorem states that every positive ''real'' trigonometric polynomial <math display="block">t(x) = \sum_{n=-N}^{N} c_n e^{i n x},</math> satisfying <math>t(x)>0</math> for all <math>x\in\mathbb{R}</math>, can be represented as the square of the [[Absolute value#Complex numbers|modulus]] of another (usually ''complex'') trigonometric polynomial <math>q(x)</math> such that:{{sfn | Riesz | Szőkefalvi-Nagy | 1990 | p=117}} <math display="block">t(x) = |q(x)|^2 = q(x)\bar{q}(x).</math> Or, equivalently, every [[Laurent polynomial]] <math display="block">w(z)=\sum_{n=-N}^{N} w_{n}z^{n},</math> with <math>w_n \in\mathbb{C}</math> that satisfies <math>w(\zeta)\geq 0</math> for all <math>\zeta \in \mathbb{T}</math> can be written as: <math display="block"> w(\zeta)=|p(\zeta)|^2=p(\zeta)\bar{p}(\bar{\zeta}),</math> for some polynomial <math>p(z)</math>.{{sfn | Dritschel | Rovnyak | 2010 | pp=223–254}} ==Notes== {{reflist}} ==References== * {{cite book | last=Dritschel | first=Michael A. | last2=Rovnyak | first2=James | title=A Glimpse at Hilbert Space Operators | chapter=The Operator Fejér-Riesz Theorem | publisher=Springer Basel | publication-place=Basel | date=2010 | isbn=978-3-0346-0346-1 | doi=10.1007/978-3-0346-0347-8_14}} * {{cite journal | last=Hussen | first=Abdulmtalb | last2=Zeyani | first2=Abdelbaset | title=Fejer-Riesz Theorem and Its Generalization | journal=International Journal of Scientific and Research Publications | volume=11 | issue=6 | date=2021 | doi=10.29322/IJSRP.11.06.2021.p11437 | pages=286–292}} * {{Citation | last1=Powell | first1=Michael J. D. | author1-link=Michael J. D. Powell | title=Approximation Theory and Methods | publisher=[[Cambridge University Press]] | isbn=978-0-521-29514-7 | year=1981}} * {{cite book | last=Riesz | first=Frigyes | last2=Szőkefalvi-Nagy | first2=Béla | title=Functional analysis | publisher=Dover Publications | publication-place=New York | date=1990 | isbn=978-0-486-66289-3}} * {{Citation | last1=Rudin | first1=Walter | author1-link=Walter Rudin | title=Real and complex analysis | publisher=[[McGraw-Hill]] | location=New York | edition=3rd | isbn=978-0-07-054234-1 |mr=924157 | year=1987}}. ==See also== * [[Trigonometric series]] * [[Quasi-polynomial]] * [[Exponential polynomial]] [[Category:Approximation theory]] [[Category:Fourier analysis]] [[Category:Polynomials]] [[Category:Trigonometry]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Citation
(
edit
)
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Harvnb
(
edit
)
Template:Reflist
(
edit
)
Template:Sfn
(
edit
)
Template:Short description
(
edit
)
Template:Tmath
(
edit
)