Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Trigonometric substitution
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{short description|Technique of integral evaluation}} {{Trigonometry}} {{calculus|expanded=integral}} In [[mathematics]], a '''trigonometric substitution''' replaces a [[trigonometric functions|trigonometric function]] for another expression. In [[calculus]], trigonometric substitutions are a technique for evaluating integrals. In this case, an expression involving a [[Radical expression|radical function]] is replaced with a trigonometric one. Trigonometric identities may help simplify the answer.<ref>{{cite book | last=Stewart | first=James | author-link=James Stewart (mathematician) | title=Calculus: Early Transcendentals | publisher=[[Brooks/Cole]] | edition=6th | year=2008 | isbn=978-0-495-01166-8 | url-access=registration | url=https://archive.org/details/calculusearlytra00stew_1 }}</ref><ref>{{cite book | last1 = Thomas | first1 = George B. | last2=Weir | first2= Maurice D. | last3=Hass | first3=Joel | author3-link = Joel Hass | author-link=George B. Thomas | title=Thomas' Calculus: Early Transcendentals | publisher=[[Addison-Wesley]] | year=2010 | edition=12th | isbn=978-0-321-58876-0}}</ref> Like other methods of integration by substitution, when evaluating a definite integral, it may be simpler to completely deduce the antiderivative before applying the boundaries of integration. ==Case I: Integrands containing ''a''<sup>2</sup> β ''x''<sup>2</sup>== Let <math>x = a \sin \theta,</math> and use the [[list of trigonometric identities|identity]] <math>1-\sin^2 \theta = \cos^2 \theta.</math> ===Examples of Case I=== [[File:Trig Sub Triangle 1.png|thumb|Geometric construction for Case I]] ====Example 1==== In the integral <math display=block>\int\frac{dx}{\sqrt{a^2-x^2}},</math> we may use <math display=block>x=a\sin \theta,\quad dx=a\cos\theta\, d\theta, \quad \theta=\arcsin\frac{x}{a}.</math> Then, <math display=block>\begin{align} \int\frac{dx}{\sqrt{a^2-x^2}} &= \int\frac{a\cos\theta \,d\theta}{\sqrt{a^2-a^2\sin^2 \theta}} \\[6pt] &= \int\frac{a\cos\theta\,d\theta}{\sqrt{a^2(1 - \sin^2 \theta )}} \\[6pt] &= \int\frac{a\cos\theta\,d\theta}{\sqrt{a^2\cos^2\theta}} \\[6pt] &= \int d\theta \\[6pt] &= \theta + C \\[6pt] &= \arcsin\frac{x}{a}+C. \end{align}</math> The above step requires that <math>a > 0</math> and <math>\cos \theta > 0.</math> We can choose <math>a</math> to be the principal root of <math>a^2,</math> and impose the restriction <math>-\pi /2 < \theta < \pi /2</math> by using the inverse sine function. For a definite integral, one must figure out how the bounds of integration change. For example, as <math>x</math> goes from <math>0</math> to <math>a/2,</math> then <math>\sin \theta</math> goes from <math>0</math> to <math>1/2,</math> so <math>\theta</math> goes from <math>0</math> to <math>\pi / 6.</math> Then, <math display=block>\int_0^{a/2}\frac{dx}{\sqrt{a^2-x^2}}=\int_0^{\pi/6} d\theta = \frac{\pi}{6}.</math> Some care is needed when picking the bounds. Because integration above requires that <math>-\pi /2 < \theta < \pi /2</math> , <math>\theta</math> can only go from <math>0</math> to <math>\pi / 6.</math> Neglecting this restriction, one might have picked <math>\theta</math> to go from <math>\pi</math> to <math>5\pi /6,</math> which would have resulted in the negative of the actual value. Alternatively, fully evaluate the indefinite integrals before applying the boundary conditions. In that case, the antiderivative gives <math display=block>\int_{0}^{a/2} \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \left( \frac{x}{a} \right) \Biggl|_{0}^{a/2} = \arcsin \left ( \frac{1}{2}\right) - \arcsin (0) = \frac{\pi}{6}</math> as before. ====Example 2==== The integral <math display=block>\int\sqrt{a^2-x^2}\,dx,</math> may be evaluated by letting <math display="inline">x=a\sin \theta,\, dx=a\cos\theta\, d\theta,\, \theta=\arcsin\dfrac{x}{a},</math> where <math>a > 0</math> so that <math display="inline">\sqrt{a^2}=a,</math> and <math display="inline">-\pi/2 \le \theta \le \pi/2</math> by the range of arcsine, so that <math>\cos \theta \ge 0</math> and <math display="inline">\sqrt{\cos^2 \theta} = \cos \theta.</math> Then, <math display=block>\begin{align} \int\sqrt{a^2-x^2}\,dx &= \int\sqrt{a^2-a^2\sin^2\theta}\,(a\cos\theta) \,d\theta \\[6pt] &= \int\sqrt{a^2(1-\sin^2\theta)}\,(a\cos\theta) \,d\theta \\[6pt] &= \int\sqrt{a^2(\cos^2\theta)}\,(a\cos\theta) \,d\theta \\[6pt] &= \int(a\cos\theta)(a\cos\theta) \,d\theta \\[6pt] &= a^2\int\cos^2\theta\,d\theta \\[6pt] &= a^2\int\left(\frac{1+\cos 2\theta}{2}\right)\,d\theta \\[6pt] &= \frac{a^2}{2} \left(\theta+\frac{1}{2}\sin 2\theta \right) + C \\[6pt] &= \frac{a^2}{2}(\theta+\sin\theta\cos\theta) + C \\[6pt] &= \frac{a^2}{2}\left(\arcsin\frac{x}{a}+\frac{x}{a}\sqrt{1-\frac{x^2}{a^2}}\right) + C \\[6pt] &= \frac{a^2}{2}\arcsin\frac{x}{a}+\frac{x}{2}\sqrt{a^2-x^2}+C. \end{align}</math> For a definite integral, the bounds change once the substitution is performed and are determined using the equation <math display="inline">\theta = \arcsin\dfrac{x}{a},</math> with values in the range <math display="inline">-\pi/2 \le \theta \le \pi/2.</math> Alternatively, apply the boundary terms directly to the formula for the antiderivative. For example, the definite integral <math display=block>\int_{-1}^1\sqrt{4-x^2}\,dx,</math> may be evaluated by substituting <math>x = 2\sin\theta, \,dx = 2\cos\theta\,d\theta,</math> with the bounds determined using <math display="inline">\theta = \arcsin\dfrac{x}{2}.</math> Because <math>\arcsin(1/{2}) = \pi/6</math> and <math>\arcsin(-1/2) = -\pi/6,</math> <math display=block>\begin{align} \int_{-1}^1\sqrt{4-x^2}\,dx &= \int_{-\pi/6}^{\pi/6}\sqrt{4-4\sin^2\theta}\,(2\cos\theta) \,d\theta \\[6pt] &= \int_{-\pi/6}^{\pi/6}\sqrt{4(1-\sin^2\theta)}\,(2\cos\theta) \,d\theta \\[6pt] &= \int_{-\pi/6}^{\pi/6}\sqrt{4(\cos^2\theta)}\,(2\cos\theta) \,d\theta \\[6pt] &= \int_{-\pi/6}^{\pi/6}(2\cos\theta)(2\cos\theta) \,d\theta \\[6pt] &= 4\int_{-\pi/6}^{\pi/6}\cos^2\theta\,d\theta \\[6pt] &= 4\int_{-\pi/6}^{\pi/6}\left(\frac{1+\cos 2\theta}{2}\right)\,d\theta \\[6pt] &= 2 \left[\theta+\frac{1}{2} \sin 2\theta \right]^{\pi/6}_{-\pi/6} = [2\theta+\sin 2\theta] \Biggl |^{\pi/6}_{-\pi/6} \\[6pt] &= \left(\frac{\pi}{3}+\sin\frac{\pi}{3}\right)-\left(-\frac{\pi}{3}+\sin\left(-\frac{\pi}{3}\right)\right) = \frac{2\pi}{3}+\sqrt{3}. \end{align}</math> On the other hand, direct application of the boundary terms to the previously obtained formula for the antiderivative yields <math display=block>\begin{align} \int_{-1}^1\sqrt{4-x^2}\,dx &= \left[ \frac{2^2}{2}\arcsin\frac{x}{2}+\frac{x}{2}\sqrt{2^2-x^2} \right]_{-1}^{1}\\[6pt] &= \left( 2 \arcsin \frac{1}{2} + \frac{1}{2}\sqrt{4-1}\right) - \left( 2 \arcsin \left(-\frac{1}{2}\right) + \frac{-1}{2}\sqrt{4-1}\right)\\[6pt] &= \left( 2 \cdot \frac{\pi}{6} + \frac{\sqrt{3}}{2}\right) - \left( 2\cdot \left(-\frac{\pi}{6}\right) - \frac{\sqrt 3}{2}\right)\\[6pt] &= \frac{2\pi}{3} + \sqrt{3} \end{align} </math> as before. ==Case II: Integrands containing ''a''<sup>2</sup> + ''x''<sup>2</sup>== Let <math>x = a \tan \theta,</math> and use the identity <math>1+\tan^2 \theta = \sec^2 \theta.</math> ===Examples of Case II=== [[File:Trig Sub Triangle 2.png|thumb|Geometric construction for Case II]] ====Example 1==== In the integral <math display=block>\int\frac{dx}{a^2+x^2}</math> we may write <math display=block>x=a\tan\theta,\quad dx=a\sec^2\theta\, d\theta, \quad \theta=\arctan\frac{x}{a},</math> so that the integral becomes <math display=block>\begin{align} \int\frac{dx}{a^2+x^2} &= \int\frac{a\sec^2\theta\, d\theta}{a^2 + a^2\tan^2\theta} \\[6pt] &= \int\frac{a\sec^2\theta\, d\theta}{a^2(1+\tan^2\theta)} \\[6pt] &= \int\frac{a\sec^2\theta\, d\theta}{a^2\sec^2\theta} \\[6pt] &= \int\frac{d\theta}{a} \\[6pt] &= \frac{\theta}{a}+C \\[6pt] &= \frac{1}{a} \arctan \frac{x}{a} + C, \end{align}</math> provided <math>a \neq 0.</math> For a definite integral, the bounds change once the substitution is performed and are determined using the equation <math>\theta = \arctan\frac{x}{a},</math> with values in the range <math>-\frac{\pi}{2} < \theta < \frac{\pi}{2}.</math> Alternatively, apply the boundary terms directly to the formula for the antiderivative. For example, the definite integral <math display=block>\int_0^1\frac{4\, dx}{1+x^2}\,</math> may be evaluated by substituting <math>x = \tan\theta, \,dx = \sec^2\theta\,d\theta,</math> with the bounds determined using <math>\theta = \arctan x.</math> Since <math>\arctan 0 = 0</math> and <math>\arctan 1 = \pi/4,</math> <math display=block>\begin{align} \int_0^1\frac{4\,dx}{1+x^2} &= 4\int_0^1\frac{dx}{1 + x^2} \\[6pt] &= 4\int_0^{\pi/4}\frac{\sec^2\theta\, d\theta}{1+\tan^2\theta} \\[6pt] &= 4\int_0^{\pi/4}\frac{\sec^2\theta\, d\theta}{\sec^2\theta} \\[6pt] &= 4\int_0^{\pi/4}d\theta \\[6pt] &= (4\theta)\Bigg|^{\pi/4}_0 = 4 \left (\frac{\pi}{4} - 0 \right) = \pi. \end{align}</math> Meanwhile, direct application of the boundary terms to the formula for the antiderivative yields <math display="block">\begin{align} \int_0^1\frac{4\,dx}{1+x^2}\, &= 4\int_0^1\frac{dx}{1+x^2} \\[6pt] &= 4\left[\frac{1}{1} \arctan \frac{x}{1} \right]^1_0 \\[6pt] &= 4(\arctan x)\Bigg|^1_0 \\[6pt] &= 4(\arctan 1 - \arctan 0) \\[6pt] &= 4 \left (\frac{\pi}{4} - 0 \right) = \pi, \end{align}</math> same as before. ====Example 2==== The integral <math display=block>\int\sqrt{a^2+x^2}\,{dx}</math> may be evaluated by letting <math>x=a\tan\theta,\, dx=a\sec^2\theta\, d\theta, \, \theta=\arctan\frac{x}{a},</math> where <math>a > 0</math> so that <math>\sqrt{a^2}=a,</math> and <math>-\frac{\pi}{2}<\theta<\frac{\pi}{2}</math> by the range of arctangent, so that <math>\sec \theta > 0</math> and <math>\sqrt{\sec^2 \theta} = \sec \theta.</math> Then, <math display=block>\begin{align} \int\sqrt{a^2+x^2}\,dx &= \int\sqrt{a^2 + a^2\tan^2\theta}\,(a \sec^2\theta)\, d\theta \\[6pt] &= \int\sqrt{a^2 (1+\tan^2\theta)}\,(a \sec^2\theta)\, d\theta \\[6pt] &= \int\sqrt{a^2 \sec^2\theta}\,(a \sec^2\theta)\, d\theta \\[6pt] &= \int(a \sec\theta)(a \sec^2\theta)\, d\theta \\[6pt] &= a^2\int \sec^3\theta\, d\theta. \\[6pt] \end{align}</math> The [[integral of secant cubed]] may be evaluated using [[integration by parts]]. As a result, <math display=block>\begin{align} \int\sqrt{a^2+x^2}\,dx &= \frac{a^2}{2}(\sec\theta \tan\theta + \ln|\sec\theta+\tan\theta|)+C \\[6pt] &= \frac{a^2}{2}\left(\sqrt{1+\frac{x^2}{a^2}}\cdot\frac{x}{a} + \ln\left|\sqrt{1+\frac{x^2}{a^2}}+\frac{x}{a}\right|\right)+C \\[6pt] &= \frac{1}{2}\left(x\sqrt{a^2+x^2} + a^2\ln\left|\frac{x+\sqrt{a^2+x^2}}{a}\right|\right)+C. \end{align}</math> ==Case III: Integrands containing ''x''<sup>2</sup> β ''a''<sup>2</sup>== Let <math>x = a \sec \theta,</math> and use the identity <math>\sec^2 \theta -1 = \tan^2 \theta.</math> ===Examples of Case III=== [[File:Trig Sub Triangle 3.png|thumb|Geometric construction for Case III]] Integrals such as <math display=block>\int\frac{dx}{x^2 - a^2}</math> can also be evaluated by [[partial fractions in integration|partial fractions]] rather than trigonometric substitutions. However, the integral <math display=block>\int\sqrt{x^2 - a^2}\, dx</math> cannot. In this case, an appropriate substitution is: <math display=block>x = a \sec\theta,\, dx = a \sec\theta\tan\theta\, d\theta, \, \theta = \arcsec\frac{x}{a},</math> where <math>a > 0</math> so that <math>\sqrt{a^2}=a,</math> and <math>0 \le \theta < \frac{\pi}{2}</math> by assuming <math>x > 0,</math> so that <math>\tan \theta \ge 0</math> and <math>\sqrt{\tan^2 \theta} = \tan \theta.</math> Then, <math display=block>\begin{align} \int\sqrt{x^2 - a^2}\, dx &= \int\sqrt{a^2 \sec^2\theta - a^2} \cdot a \sec\theta\tan\theta\, d\theta \\ &= \int\sqrt{a^2 (\sec^2\theta - 1)} \cdot a \sec\theta\tan\theta\, d\theta \\ &= \int\sqrt{a^2 \tan^2\theta} \cdot a \sec\theta\tan\theta\, d\theta \\ &= \int a^2 \sec\theta\tan^2\theta\, d\theta \\ &= a^2 \int (\sec\theta)(\sec^2\theta - 1)\, d\theta \\ &= a^2 \int (\sec^3\theta - \sec\theta)\, d\theta. \end{align}</math> One may evaluate the [[integral of the secant function]] by multiplying the numerator and denominator by <math>( \sec \theta + \tan \theta)</math> and the [[integral of secant cubed]] by parts.<ref name=":1">{{Cite book|last=Stewart|first=James|title=Calculus - Early Transcendentals|publisher=Cengage Learning|year=2012|isbn=978-0-538-49790-9|location=United States|pages=475β6|chapter=Section 7.2: Trigonometric Integrals|author-link=James Stewart (mathematician)}}</ref> As a result, <math display=block>\begin{align} \int\sqrt{x^2-a^2}\,dx &= \frac{a^2}{2}(\sec\theta \tan\theta + \ln|\sec\theta+\tan\theta|)-a^2\ln|\sec\theta+\tan\theta|+C \\[6pt] &= \frac{a^2}{2}(\sec\theta \tan\theta - \ln|\sec\theta+\tan\theta|)+C \\[6pt] &= \frac{a^2}{2}\left(\frac{x}{a}\cdot\sqrt{\frac{x^2}{a^2}-1} - \ln\left|\frac{x}{a}+\sqrt{\frac{x^2}{a^2}-1}\right|\right)+C \\[6pt] &= \frac{1}{2}\left(x\sqrt{x^2-a^2} - a^2\ln\left|\frac{x+\sqrt{x^2-a^2}}{a}\right|\right)+C. \end{align}</math> When <math>\frac{\pi}{2} < \theta \le \pi,</math> which happens when <math>x < 0</math> given the range of arcsecant, <math>\tan \theta \le 0,</math> meaning <math>\sqrt{\tan^2 \theta} = -\tan \theta</math> instead in that case. ==Substitutions that eliminate trigonometric functions== Substitution can be used to remove trigonometric functions. For instance, <math display="block">\begin{align} \int f(\sin(x), \cos(x))\, dx &=\int\frac1{\pm\sqrt{1-u^2}} f\left(u,\pm\sqrt{1-u^2}\right)\, du && u=\sin (x) \\[6pt] \int f(\sin(x), \cos(x))\, dx &=\int\frac{1}{\mp\sqrt{1-u^2}} f\left(\pm\sqrt{1-u^2},u\right)\, du && u=\cos (x) \\[6pt] \int f(\sin(x), \cos(x))\, dx &=\int\frac2{1+u^2} f \left(\frac{2u}{1+u^2},\frac{1-u^2}{1+u^2}\right)\, du && u=\tan\left (\frac{x}{2} \right ) \\[6pt] \end{align}</math> The last substitution is known as the [[Weierstrass substitution]], which makes use of [[tangent half-angle formulas]]. For example, <math display=block>\begin{align} \int\frac{4 \cos x}{(1+\cos x)^3}\, dx &= \int\frac2{1+u^2}\frac{4\left(\frac{1-u^2}{1+u^2}\right)}{\left(1+\frac{1-u^2}{1+u^2}\right)^3}\, du = \int (1-u^2)(1+u^2)\, du \\&= \int (1-u^4)\,du = u - \frac{u^5}{5} + C = \tan \frac{x}{2} - \frac{1}{5} \tan^5 \frac{x}{2} + C. \end{align}</math> ==Hyperbolic substitution== Substitutions of [[hyperbolic function]]s can also be used to simplify integrals.<ref>{{cite web|last=Boyadzhiev|first=Khristo N.|title=Hyperbolic Substitutions for Integrals|url=http://www2.onu.edu/~m-caragiu.1/bonus_files/HYPERSUB.pdf|access-date=4 March 2013|archive-date=26 February 2020|archive-url=https://web.archive.org/web/20200226040813/http://www2.onu.edu/~m-caragiu.1/bonus_files/HYPERSUB.pdf|url-status=dead}}</ref> For example, to integrate <math>1/\sqrt{a^2+x^2}</math>, introduce the substitution <math>x=a\sinh{u}</math> (and hence <math>dx=a\cosh u \,du</math>), then use [[Hyperbolic functions#Useful relations|the identity <math>\cosh^2 (x) - \sinh^2 (x) = 1</math>]] to find: <math display="block">\begin{align} \int \frac{dx}{\sqrt{a^2+x^2}} &= \int \frac{a\cosh u \,du}{\sqrt{a^2+a^2\sinh^2 u}} \\[6pt] &=\int \frac{\cosh{u} \,du}{\sqrt{1+\sinh^2{u}}} \\[6pt] &=\int \frac{\cosh{u}}{\cosh u} \,du \\[6pt] &=u+C \\[6pt] &=\sinh^{-1}{\frac{x}{a}} + C. \end{align}</math> If desired, this result may be further transformed using other identities, such as using [[Inverse hyperbolic functions#Definitions in terms of logarithms|the relation <math>\sinh^{-1}{z} = \operatorname{arsinh}{z} = \ln(z + \sqrt{z^2 + 1})</math>]]: <math display="block">\begin{align} \sinh^{-1}{\frac{x}{a}} + C &=\ln\left(\frac{x}{a} + \sqrt{\frac{x^2}{a^2} + 1}\,\right) + C \\[6pt] &=\ln\left(\frac{x + \sqrt{x^2+a^2}}{a}\,\right) + C. \end{align}</math> ==See also== {{Portal|Mathematics}} {{Wikiversity|Trigonometric Substitutions}} {{Wikibooks|Calculus/Integration techniques/Trigonometric Substitution}} * [[Integration by substitution]] * [[Weierstrass substitution]] * [[Euler substitution]] ==References== {{reflist}} {{DEFAULTSORT:Trigonometric Substitution}} {{Integrals}} [[Category:Integral calculus]] [[Category:Trigonometry]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Bigger
(
edit
)
Template:Calculus
(
edit
)
Template:Cite book
(
edit
)
Template:Cite web
(
edit
)
Template:Endflatlist
(
edit
)
Template:Integrals
(
edit
)
Template:Portal
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)
Template:Sister project
(
edit
)
Template:Startflatlist
(
edit
)
Template:Trigonometry
(
edit
)
Template:Wikibooks
(
edit
)
Template:Wikiversity
(
edit
)