Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Trinification
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Grand Unified Theory in physics}} In [[physics]], the '''trinification model''' is a [[Grand Unified Theory]] proposed by [[Alvaro De Rújula]], [[Howard Georgi]] and [[Sheldon Glashow]] in 1984.<ref>{{cite book|first1=A. |last1=De Rujula |first2=H. |last2=Georgi |first3=S. L. |last3=Glashow |chapter=Trinification of all elementary particle forces |title=Fifth Workshop on Grand Unification |editor-first1=K. |editor-last1=Kang |editor-first2=H. |editor-last2=Fried |editor-first3=F. |editor-last3=Frampton |publisher=World Scientific |location=Singapore |year=1984}}</ref><ref>{{Cite journal|last=Hetzel|first=Jamil|last2=Stech|first2=Berthold|date=2015-03-25|title=Low-energy phenomenology of trinification: An effective left-right-symmetric model|url=https://link.aps.org/doi/10.1103/PhysRevD.91.055026|journal=Physical Review D|language=en|volume=91|issue=5|pages=055026|doi=10.1103/PhysRevD.91.055026|issn=1550-7998|arxiv=1502.00919}}</ref> ==Details== It states that the [[gauge group]] is either :<math>SU(3)_C\times SU(3)_L\times SU(3)_R</math> or :<math>[SU(3)_C\times SU(3)_L\times SU(3)_R]/\mathbb{Z}_3</math>; and that the fermions form three families, each consisting of the [[Representations of Lie groups/algebras|representations]]: <math>\mathbf Q=(3,\bar{3},1)</math>, <math>\mathbf Q^c=(\bar{3},1,3)</math>, and <math>\mathbf L=(1,3,\bar{3})</math>. The '''L''' includes a hypothetical [[right-handed neutrino]], which may account for observed [[neutrino mass]]es (see [[neutrino oscillation]]s), and a similar sterile "flavon." There is also a <math>(1,3,\bar{3})</math> and maybe also a <math>(1,\bar{3},3)</math> [[scalar field]] called the [[Higgs field]] which acquires a [[vacuum expectation value]]. This results in a [[spontaneous symmetry breaking]] from :<math>SU(3)_L\times SU(3)_R</math> to <math>[SU(2)\times U(1)]/\mathbb{Z}_2</math>. The fermions branch (see [[restricted representation]]) as :<math>(3,\bar{3},1)\rightarrow(3,2)_{\frac{1}{6}}\oplus(3,1)_{-\frac{1}{3}}</math>, :<math>(\bar{3},1,3)\rightarrow 2\,(\bar{3},1)_{\frac{1}{3}}\oplus(\bar{3},1)_{-\frac{2}{3}}</math>, :<math>(1,3,\bar{3})\rightarrow 2\,(1,2)_{-\frac{1}{2}}\oplus(1,2)_{\frac{1}{2}}\oplus2\,(1,1)_0\oplus(1,1)_1</math>, and the gauge bosons as :<math>(8,1,1)\rightarrow(8,1)_0</math>, :<math>(1,8,1)\rightarrow(1,3)_0\oplus(1,2)_{\frac{1}{2}}\oplus(1,2)_{-\frac{1}{2}}\oplus(1,1)_0</math>, :<math>(1,1,8)\rightarrow 4\,(1,1)_0\oplus 2\,(1,1)_1\oplus 2\,(1,1)_{-1}</math>. Note that there are two [[Majorana spinor|Majorana]] neutrinos per [[Generation (particle physics)|generation]] (which is consistent with [[neutrino oscillation]]s). Also, each generation has a pair of [[Doublet–triplet splitting problem|triplet]]s <math>(3,1)_{-\frac{1}{3}}</math> and <math>(\bar{3},1)_{\frac{1}{3}}</math>, and doublets <math>(1,2)_{\frac{1}{2}}</math> and <math>(1,2)_{-\frac{1}{2}}</math>, which decouple at the GUT breaking scale due to the couplings :<math>(1,3,\bar{3})_H(3,\bar{3},1)(\bar{3},1,3)</math> and :<math>(1,3,\bar{3})_H(1,3,\bar{3})(1,3,\bar{3})</math>. Note that calling [[Representations of Lie groups/algebras|representations]] things like <math>(3,\bar{3},1)</math> and (8,1,1) is purely a physicist's convention, not a mathematician's, where representations are either labelled by [[Young tableau]]x or [[Dynkin diagram]]s with numbers on their vertices, but it is standard among GUT theorists. Since the [[homotopy group]] :<math>\pi_2\left(\frac{SU(3)\times SU(3)}{[SU(2)\times U(1)]/\mathbb{Z}_2}\right)=\mathbb{Z}</math>, this model predicts [['t Hooft–Polyakov monopole|'t Hooft–Polyakov]] [[magnetic monopole]]s. Trinification is a [[maximal subalgebra]] of [[E6 (mathematics)#Physics|E<sub>6</sub>]], whose matter representation {{math|'''27'''}} has exactly the same representation and unifies the <math>(3,3,1)\oplus(\bar{3},\bar{3},1)\oplus(1,\bar{3},3)</math> fields. E<sub>6</sub> adds 54 [[gauge boson]]s, 30 it shares with [[SO(10)]], the other 24 to complete its <math>\mathbf{16}\oplus\mathbf{\overline{16}}</math>. ==References== {{Reflist}} [[Category:Grand Unified Theory]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Math
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)