Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Turn (angle)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{short description|Unit of plane angle where a full circle equals 1}} {{Redirect2|360 degrees|360°}} {{Use dmy dates|date=August 2019|cs1-dates=y}} {{Use list-defined references|date=July 2022}} {{Infobox unit | name = Turn | othernames = Revolution, Cycles | image = angle-fractions.png | caption = {{longitem|Counterclockwise [[rotation]]s about the center point starting from the right, where a complete rotation corresponds to an angle of rotation of 1 turn.}} | standard = | quantity = [[Plane angle]] | symbol = tr | symbol2 = pla | symbol3 = rev | symbol4 = cyc | units1 = [[radian]]s | inunits1 = {{math|2''π''}} rad<br/>≈ {{val|6.283185307|end=...|u=rad}} | units3 = [[milliradian]]s | inunits3 = {{math|2000''π''}} mrad<br/>≈ {{val|6283.185307|end=...|u=mrad}} | units4 = [[Degree (angle)|degree]]s | inunits4 = 360° | units5 = [[gradian]]s | inunits5 = 400<sup>g</sup> }} The '''turn''' (symbol '''tr''' or '''pla''') is a unit of [[plane angle]] measurement that is the measure of a [[complete angle]]—the angle [[Subtended angle|subtended]] by a complete [[circle]] at its center. One turn is equal to {{math|2[[Pi|''π'']]}} [[radian]]s, 360 [[degree (angle)|degrees]] or 400 [[gradian]]s. As an [[angular unit]], one turn also corresponds to one '''cycle''' (symbol '''cyc''' or '''c''')<ref name="Fitzpatrick_2021" /> or to one '''revolution''' (symbol '''rev''' or '''r''').<ref name="IET_2016" /> Common related [[Frequency#Unit|units of frequency]] are ''[[cycles per second]]'' (cps) and ''[[revolutions per minute]]'' (rpm).{{efn|The angular unit terms "cycles" and "revolutions" are also used, ambiguously, as shorter versions of the related frequency units.{{cn|date=July 2023}}}} The angular unit of the turn is useful in connection with, among other things, [[electromagnetic coil]]s (e.g., [[transformer]]s), rotating objects, and the [[winding number]] of curves. Divisions of a turn include the half-turn and quarter-turn, spanning a [[Angle#Individual_angles|straight angle]] and a [[right angle]], respectively; [[metric prefixes]] can also be used as in, e.g., centiturns (ctr), milliturns (mtr), etc. In the [[International System of Quantities|ISQ]], an arbitrary "number of turns" (also known as "number of revolutions" or "number of cycles") is formalized as a [[dimensionless quantity]] called '''''rotation''''', defined as the [[ratio]] of a given angle and a full turn. It is represented by the symbol ''N''. {{xref|(See [[#In the ISQ/SI|below]] for the formula.)}} Because one turn is <math>2\pi</math> radians, some have proposed representing <math>2\pi</math> with the single letter [[Tau (mathematics)|tau]] (<math>\tau</math>). == Unit symbols == There are several unit symbols for the turn. === EU and Switzerland === The German standard [[DIN 1315]] (March 1974) proposed the unit symbol "pla" (from Latin: {{lang|la|plenus angulus}} 'full angle') for turns.<ref name="German_2013"/><ref name="Kurzweil_1999"/> Covered in {{ill|DIN 1301-1|de}} (October 2010)<!-- in a table "allgemein anwendbare Einheiten außerhalb des SI" -->, the so-called {{lang|de|Vollwinkel}} ('full angle') is not an [[SI unit]]. However, it is a [[legal unit of measurement]] in the EU<ref name="EWG_1980"/><ref name="EG_2009"/> and Switzerland.<ref name="Einheitenverordnung_1994"/> === Calculators === The scientific calculators [[HP 39gII]] and [[HP Prime]] support the unit symbol "tr" for turns since 2011 and 2013, respectively. Support for "tr" was also added to [[newRPL]] for the [[HP 50g]] in 2016, and for the [[hp 39g+]], [[HP 49g+]], [[HP 39gs]], and [[HP 40gs]] in 2017.<ref name="Lapilli_2016"/><ref name="Lapilli_2018"/> An angular mode <var>TURN</var> was suggested for the [[WP 43S]] as well,<ref name="Paul_2016"/> but the calculator instead implements "MUL{{pi}}" (''[[multiples of π|multiples of {{pi}}]]'') as mode and unit since 2019.<ref name="Bonin_2019_OG"/><ref name="Bonin_2019_RG"/> == Divisions == {{see also|Angle#Units}} Many angle units are defined as a division of the turn. For example, the [[Degree (angle)|degree]] is defined such that one turn is 360 degrees. Using [[metric prefix]]es, the turn can be divided in 100 centiturns or {{val|1000}} milliturns, with each milliturn corresponding to an [[angle]] of 0.36°, which can also be written as [[Minute and second of arc|21′ 36″]].<ref name="Hoyle_1962" /><ref name="Klein_2012" /> A [[protractor]] divided in centiturns is normally called a "[[percentage]] protractor". While percentage protractors have existed since 1922,<ref name="Croxton_1992" /> the terms centiturns, milliturns and microturns<!-- ca. 1.3" --> were introduced much later by the British astronomer [[Fred Hoyle]] in 1962.<ref name="Hoyle_1962" /><ref name="Klein_2012" /> Some measurement devices for artillery and [[satellite watching]] carry milliturn scales.<ref name="Schiffner_1965" /><ref name="Hayes_1975" /> [[Binary angular measurement|Binary fractions of a turn]] are also used. Sailors have traditionally divided a turn into 32 [[points of the compass|compass points]], which implicitly have an angular separation of {{sfrac|1|32}} turn. The ''binary degree'', also known as the ''[[binary radian]]'' (or ''brad''), is {{sfrac|1|256}} turn.<ref name="Savage_2007" /> The binary degree is used in computing so that an angle can be represented to the maximum possible precision in a single [[byte]]. Other measures of angle used in computing may be based on dividing one whole turn into {{math|2<sup>''n''</sup>}} equal parts for other values of {{mvar|n}}.<ref name="Hargreaves_2010" /> == Unit conversion == [[File:2pi-unrolled.gif|400px|thumb|right|The [[circumference]] of the [[unit circle]] (whose [[radius]] is one) is {{math|2''π''}}.]] One turn is equal to <math>2\pi</math> = <math>\tau</math> ≈ {{val|6.283185307179586}}<ref name="OEIS2C_A019692" /> [[radian]]s, 360 [[degree (angle)|degrees]], or 400 [[gradian]]s. {| class="wikitable" style="text-align:center;" |+ Conversion of common angles |- ! [[Turn (angle)|Turn]]s ! colspan="2" | [[Radian]]s ! [[Degree (angle)|Degree]]s ! [[Gradian]]s |- | 0 turn | colspan="2" | 0 rad | 0° | 0<sup>g</sup> |- | {{sfrac|1|72}} turn | {{sfrac|{{tau}}|72}} rad | {{sfrac|{{pi}}|36}} rad | 5° | {{sfrac|5|5|9}}<sup>g</sup> |- | {{sfrac|1|24}} turn | {{sfrac|{{tau}}|24}} rad | {{sfrac|{{pi}}|12}} rad | 15° | {{sfrac|16|2|3}}<sup>g</sup> |- | {{sfrac|1|16}} turn | {{sfrac|{{tau}}|16}} rad | {{sfrac|{{pi}}|8}} rad | 22.5° | 25<sup>g</sup> |- | {{sfrac|1|12}} turn | {{sfrac|{{tau}}|12}} rad | {{sfrac|{{pi}}|6}} rad | 30° | {{sfrac|33|1|3}}<sup>g</sup> |- | {{sfrac|1|10}} turn | {{sfrac|{{tau}}|10}} rad | {{sfrac|{{pi}}|5}} rad | 36° | 40<sup>g</sup> |- | {{sfrac|1|8}} turn | {{sfrac|{{tau}}|8}} rad | {{sfrac|{{pi}}|4}} rad | 45° | 50<sup>g</sup> |- | {{sfrac|1|2{{pi}}}} turn | colspan="2" | 1 rad | {{circa}} 57.3° | {{circa}} 63.7<sup>g</sup> |- | {{sfrac|1|6}} turn | {{sfrac|{{tau}}|6}} rad | {{sfrac|{{pi}}|3}} rad | 60° | {{sfrac|66|2|3}}<sup>g</sup> |- | {{sfrac|1|5}} turn | {{sfrac|{{tau}}|5}} rad | {{sfrac|2{{pi}}|5}} rad | 72° | 80<sup>g</sup> |- | {{sfrac|1|4}} turn | {{sfrac|{{tau}}|4}} rad | {{sfrac|{{pi}}|2}} rad | 90° | 100<sup>g</sup> |- | {{sfrac|1|3}} turn | {{sfrac|{{tau}}|3}} rad | {{sfrac|2{{pi}}|3}} rad | 120° | {{sfrac|133|1|3}}<sup>g</sup> |- | {{sfrac|2|5}} turn | {{sfrac|2{{tau}}|5}} rad | {{sfrac|4{{pi}}|5}} rad | 144° | 160<sup>g</sup> |- | {{sfrac|1|2}} turn | {{sfrac|{{tau}}|2}} rad | {{pi}} rad | 180° | 200<sup>g</sup> |- | {{sfrac|3|4}} turn | {{sfrac|3{{tau}}|4}} rad | {{sfrac|3{{pi}}|2}} rad | 270° | 300<sup>g</sup> |- | 1 turn | {{tau}} rad | 2{{pi}} rad | 360° | 400<sup>g</sup> |} == In the ISQ/SI == {{anchor|In_the_ISQ/SI}} {{Infobox physical quantity | name = Rotation | othernames = number of revolutions, number of cycles, number of turns, number of rotations | width = | background = | image = | caption = | unit = [[Unitless]] | otherunits = | symbols = ''N'' | baseunits = | dimension = [[Dimension one|1]] | extensive = | intensive = | conserved = | transformsas = | derivations = }} In the [[International System of Quantities]] (ISQ), '''rotation''' (symbol '''''N''''') is a [[physical quantity]] defined as '''number of revolutions''':<ref name="ISO80000-3_2019" /> <blockquote>''N'' is the number (not necessarily an integer) of revolutions, for example, of a rotating body about a given axis. Its value is given by:<!-- Difference from the original formula present in the following formula is intentional. See [https://en.wikipedia.org/wiki/Talk:Turn_(angle)#Way_forward]. --> : <math>N = \frac{\varphi}{2 \pi \text{ rad}}</math> where {{varphi}} denotes the measure of [[rotational displacement]].</blockquote> The above definition is part of the ISQ, formalized in the international standard [[ISO 80000-3]] (Space and time),<ref name="ISO80000-3_2019" /> and adopted in the [[International System of Units]] (SI).<ref name="SIBrochure_9" /><ref name="NISTGuide_2009" /> Rotation count or number of revolutions is a [[quantity of dimension one]], resulting from a ratio of angular displacement. It can be negative and also greater than 1 in modulus. The relationship between quantity rotation, ''N'', and unit turns, tr, can be expressed as: : <math>N = \frac \varphi \text{tr} = \{ \varphi \}_\text{tr}</math> where <nowiki>{</nowiki>{{varphi}}<nowiki>}</nowiki><sub>tr</sub> is the numerical value of the angle {{varphi}} in units of turns (see ''{{slink|Physical quantity#Components}}''). In the ISQ/SI, rotation is used to derive [[rotational frequency]] (the [[Derivative|rate of change]] of rotation with respect to time), denoted by {{mvar|n}}: : <math>n = \frac{\mathrm{d}N}{\mathrm{d}t}</math> The SI unit of rotational frequency is the [[reciprocal second]] (s<sup>−1</sup>). Common related [[Frequency#Unit|units of frequency]] are ''[[hertz]]'' (Hz), ''[[cycles per second]]'' (cps), and ''[[revolutions per minute]]'' (rpm). {{Infobox unit | name = Revolution | othernames = Cycle | standard = | quantity = [[Rotation (quantity)|Rotation]] | symbol = rev | symbol2 = r | symbol3 = cyc | symbol4 = c | units1 = [[Base unit (measurement)|Base unit]]s | inunits1 = [[One (unit)|1]] }} {{anchor|Rotational unit}} The superseded version ISO 80000-3:2006 defined "revolution" as a special name for the [[dimensionless unit]] "one",{{efn|"The special name revolution, symbol r, for this unit [name 'one', symbol '1'] is widely used in specifications on rotating machines."<ref name="ISO 80000-3:2006">{{cite web | title=ISO 80000-3:2006 | website=ISO | date=2001-08-31 | url=https://www.iso.org/standard/31888.html | access-date=2023-04-25}}</ref>}} which also received other special names, such as the radian.{{efn|"Measurement units of quantities of dimension one are numbers. In some cases, these measurement units are given special names, e.g. radian..."<ref name="ISO 80000-3:2006"/>}} Despite their [[dimensional homogeneity]], these two specially named dimensionless units are applicable for non-comparable [[kind of quantity|kinds of quantity]]: rotation and angle, respectively.<ref name="ISO 80000-1">{{cite web |title=ISO 80000-1:2009(en) Quantities and units — Part 1: General |url=https://www.iso.org/obp/ui/#iso:std:iso:80000:-1:ed-1:v1:en |access-date=2023-05-12 |website=iso.org}}</ref> "Cycle" is also mentioned in ISO 80000-3, in the definition of ''[[period (physics)|period]]''.{{efn|"3-14) period duration, period: duration (item 3‑9) of one cycle of a periodic event"<ref name="ISO80000-3_2019"/>}} == See also == * [[Ampere-turn]] * [[Hertz]] (modern) or [[Cycle per second]] (older) * [[Angle of rotation]] * [[Revolutions per minute]] * [[Repeating circle]] * [[Spat (angular unit)]] – the [[solid angle]] counterpart of the turn, equivalent to {{math|4''π''}} [[steradian]]s. * [[Unit interval]] * ''[[Divine Proportions: Rational Trigonometry to Universal Geometry]]'' * [[Modulo operation]] * [[Twist (rational trigonometry)|Twist (mathematics)]] * [[Tau (mathematics)]] == Notes == {{notelist}} == References == {{reflist|refs= <ref name="Savage_2007">{{cite web |title=ooPIC Programmer's Guide - Chapter 15: URCP |work=[[ooPIC]] Manual & Technical Specifications - ooPIC Compiler Ver 6.0 |orig-date=1997 |date=2007 |publisher=Savage Innovations, LLC |url=http://www.oopic.com/pgchap15.htm |access-date=2019-08-05 |url-status=dead |archive-url=https://web.archive.org/web/20080628051746/http://www.oopic.com/pgchap15.htm |archive-date=2008-06-28}}</ref> <ref name="Hargreaves_2010">{{cite web |title=Angles, integers, and modulo arithmetic |author-first=Shawn |author-last=Hargreaves |author-link=:pl:Shawn Hargreaves |publisher=blogs.msdn.com |url=http://blogs.msdn.com/shawnhar/archive/2010/01/04/angles-integers-and-modulo-arithmetic.aspx |access-date=2019-08-05 |url-status=live |archive-url=https://web.archive.org/web/20190630223817/http://www.shawnhargreaves.com/blogindex.html |archive-date=2019-06-30}}</ref> <ref name="Croxton_1992">{{cite journal |author-first=Frederick E. |author-last=Croxton |date=1922 |title=A Percentage Protractor - Designed for Use in the Construction of Circle Charts or "Pie Diagrams" |series=Short Note |journal=[[Journal of the American Statistical Association]] |volume=18 |issue=137 |pages=108–109 |doi=10.1080/01621459.1922.10502455}}</ref> <ref name="Hoyle_1962">{{cite book |author-first=Fred |author-last=Hoyle |author-link=Fred Hoyle |editor-first=M. H. |editor-last=Chandler |title=Astronomy |url=https://archive.org/details/astronom00hoyl |url-access=registration |publisher=[[Macdonald & Co. (Publishers) Ltd.]] / Rathbone Books Limited |location=London, UK |date=1962 |edition=1 |lccn=62065943 |oclc=7419446}} (320 pages)</ref> <ref name="Klein_2012">{{cite book |author-first=Herbert Arthur |author-last=Klein |title=The Science of Measurement: A Historical Survey (The World of Measurements: Masterpieces, Mysteries and Muddles of Metrology) |chapter=Chapter 8: Keeping Track of Time |edition=corrected reprint of original |date=2012 |orig-date=1988, 1974 |lccn=88-25858 |publisher=[[Dover Publications, Inc.]] / [[Courier Corporation]] (originally by [[Simon & Schuster, Inc.]]) |series=Dover Books on Mathematics |isbn=978-0-48614497-9 |page=102 |chapter-url=https://books.google.com/books?id=CrmuSiCFyikC&pg=PA102 |access-date=2019-08-06}} (736 pages)</ref> <ref name="Schiffner_1965">{{cite journal |title=Bestimmung von Satellitenbahnen |language=de |author-first=Friedrich |author-last=Schiffner |editor-first=Maria Emma |editor-last=Wähnl |editor-link=:de:Maria Emma Wähnl |journal=[[Astronomische Mitteilungen der Urania-Sternwarte Wien]] |publisher=[[Volksbildungshaus Wiener Urania]] |location=Wien, Austria |volume=8 |issue= |date=1965}}</ref> <ref name="Hayes_1975">{{cite book |title=Trackers of the Skies |author-first=Eugene Nelson |author-last=Hayes |series=History of the Smithsonian Satellite-tracking Program |publisher=[[Academic Press]] / Howard A. Doyle Publishing Company |location=Cambridge, Massachusetts, USA |date=1975 |orig-date=1968 |url=https://siris-sihistory.si.edu/ipac20/ipac.jsp?&profile=all&source=~!sichronology&uri=full=3100001~!3190~!0#focus}}</ref> <ref name="EWG_1980">{{cite web |title=Richtlinie 80/181/EWG - Richtlinie des Rates vom 20. Dezember 1979 zur Angleichung der Rechtsvorschriften der Mitgliedstaaten über die Einheiten im Meßwesen und zur Aufhebung der Richtlinie 71/354/EWG |language=de |date=1980-02-15 |url=https://eur-lex.europa.eu/legal-content/DE/TXT/PDF/?uri=CELEX:01980L0181-20090527 |access-date=2019-08-06 |url-status=live |archive-url=https://web.archive.org/web/20190622210052/https://eur-lex.europa.eu/legal-content/DE/TXT/PDF/?uri=CELEX:01980L0181-20090527 |archive-date=2019-06-22}}</ref> <ref name="EG_2009">{{cite web |title=Richtlinie 2009/3/EG des Europäischen Parlaments und des Rates vom 11. März 2009 zur Änderung der Richtlinie 80/181/EWG des Rates zur Angleichung der Rechtsvorschriften der Mitgliedstaaten über die Einheiten im Messwesen (Text von Bedeutung für den EWR) |language=de |date=2009-03-11 |url=https://eur-lex.europa.eu/legal-content/DE/TXT/PDF/?uri=CELEX:32009L0003&from=EN |access-date=2019-08-06 |url-status=live |archive-url=https://web.archive.org/web/20190806184426/https://eur-lex.europa.eu/legal-content/DE/TXT/PDF/?uri=CELEX:32009L0003&from=EN |archive-date=2019-08-06}}</ref> <ref name="Einheitenverordnung_1994">{{cite book |title=Einheitenverordnung |chapter=Art. 15 Einheiten in Form von nichtdezimalen Vielfachen oder Teilen von SI-Einheiten |id=941.202 |date=1994-11-23 |language=de-ch |publisher=[[Schweizerischer Bundesrat]]<!-- |work=Der Bundesrat - Das Portal der Schweizer Regierung--> |chapter-url=http://www.admin.ch/opc/de/classified-compilation/19940345/ |access-date=2013-01-01 |url-status=live |archive-url=https://web.archive.org/web/20190510122902/https://www.admin.ch/opc/de/classified-compilation/19940345/ |archive-date=2019-05-10}}</ref> <ref name="German_2013">{{cite book |title=Handbuch SI-Einheiten: Definition, Realisierung, Bewahrung und Weitergabe der SI-Einheiten, Grundlagen der Präzisionsmeßtechnik |author-first1=Sigmar |author-last1=German |author-first2=Peter |author-last2=Drath |publisher=[[Friedrich Vieweg & Sohn Verlagsgesellschaft mbH]], reprint: [[Springer-Verlag]] |language=de |date=2013-03-13 |orig-date=1979 |edition=1 |isbn=978-3-32283606-9 |id=978-3-528-08441-7, 978-3-32283606-9 |page=421 |url=https://books.google.com/books?id=63qcBgAAQBAJ&pg=PA421 |access-date=2015-08-14}}</ref> <ref name="Kurzweil_1999">{{cite book |title=Das Vieweg Einheiten-Lexikon: Formeln und Begriffe aus Physik, Chemie und Technik |author-first=Peter |author-last=Kurzweil |language=de |publisher=Vieweg, reprint: [[Springer-Verlag]] |edition=1 |date=2013-03-09 |orig-date=1999 |isbn=978-3-32292920-4 |id=978-3-322-92921-1 |doi=10.1007/978-3-322-92920-4 |page=403 |url=https://books.google.com/books?id=2zecBgAAQBAJ |access-date=2015-08-14}}</ref> <ref name="Lapilli_2016">{{cite web |title=RE: newRPL: Handling of units |author-first=Claudio Daniel |author-last=Lapilli |date=2016-05-11 |work=HP Museum |url=http://www.hpmuseum.org/forum/thread-4783-post-55836.html#pid55836 |access-date=2019-08-05 |url-status=live |archive-url=https://web.archive.org/web/20170810012742/http://www.hpmuseum.org/forum/thread-4783-post-55836.html |archive-date=2017-08-10}}</ref> <ref name="Lapilli_2018">{{cite book |title=newRPL User Manual |chapter=Chapter 3: Units - Available Units - Angles |author-first=Claudio Daniel |author-last=Lapilli |date=2018-10-25 |chapter-url=https://newrpl.wiki.hpgcc3.org/doku.php?id=manual:chapter3:units#available-units |access-date=2019-08-07 |url-status=live |archive-url=https://web.archive.org/web/20190806225910/https://newrpl.wiki.hpgcc3.org/doku.php?id=manual:chapter3:units#available-units |archive-date=2019-08-06}}</ref> <ref name="OEIS2C_A019692">Sequence {{OEIS2C|A019692}}</ref> <ref name="Paul_2016">{{cite web |title=RE: WP-32S in 2016? |date=2016-01-12 |orig-date=2016-01-11 |author-first=Matthias R. |author-last=Paul |work=HP Museum |url=https://www.hpmuseum.org/forum/thread-5427-post-48945.html#pid48945 |access-date=2019-08-05 |url-status=live |archive-url=https://web.archive.org/web/20190805163709/https://www.hpmuseum.org/forum/thread-5427-post-48945.html |archive-date=2019-08-05 |quote=[…] I'd like to see a TURN mode being implemented as well. TURN mode works exactly like DEG, RAD and GRAD (including having a full set of angle unit conversion functions like on the [[WP 34S]]), except for that a full circle doesn't equal 360 degree, 6.2831... rad or 400 gon, but 1 turn. (I […] found it to be really convenient in engineering/programming, where you often have to convert to/from other unit representations […] But I think it can also be useful for educational purposes. […]) Having the angle of a full circle normalized to 1 allows for easier [[Rule of three (mathematics)|conversions]] to/from a whole bunch of other angle units […]}}</ref> <ref name="Bonin_2019_OG">{{cite book |title=WP 43S Owner's Manual |date=2019 |orig-date=2015 |author-last=Bonin |author-first=Walter |isbn=978-1-72950098-9 |edition=draft |version=0.12 |pages=72, 118–119, 311 |url=https://gitlab.com/wpcalculators/wp43/-/raw/master/docs/OwnersManual.pdf |access-date=2019-08-05 |url-status=live |archive-url=https://web.archive.org/web/20230718192232/https://gitlab.com/rpncalculators/wp43/-/raw/master/docs/OwnersManual.pdf |archive-date=2023-07-18}} [https://gitlab.com/Over_score/wp43s] [https://gitlab.com/wpcalculators/wp43] (314 pages)</ref> <ref name="Bonin_2019_RG">{{cite book |title=WP 43S Reference Manual |date=2019 |orig-date=2015 |author-last=Bonin |author-first=Walter |isbn=978-1-72950106-1 |edition=draft |version=0.12 |pages=iii, 54, 97, 128, 144, 193, 195 |url=https://gitlab.com/wpcalculators/wp43/-/raw/master/docs/ReferenceManual.pdf |access-date=2019-08-05 |url-status=live |archive-url=https://web.archive.org/web/20230718192332/https://gitlab.com/rpncalculators/wp43/-/raw/master/docs/ReferenceManual.pdf |archive-date=2023-07-18}} [https://gitlab.com/Over_score/wp43s] [https://gitlab.com/wpcalculators/wp43] (271 pages)</ref> <ref name="Fitzpatrick_2021">{{cite book |author-last=Fitzpatrick |author-first=Richard |title=Newtonian Dynamics: An Introduction |publisher=[[CRC Press]] |date=2021 |isbn=978-1-000-50953-3 |url=https://books.google.com/books?id=rRpSEAAAQBAJ&pg=PA116 |access-date=2023-04-25 |page=116}}</ref> <ref name="IET_2016">{{cite book |title=Units & Symbols for Electrical & Electronic Engineers |date=2016 |publisher=[[Institution of Engineering and Technology]] |publication-place=London, UK |url=https://www.theiet.org/media/4173/units-and-symbols.pdf |access-date=2023-07-18 |url-status=live |archive-url=https://web.archive.org/web/20230718183635/https://www.theiet.org/media/4173/units-and-symbols.pdf |archive-date=2023-07-18}} (1+iii+32+1 pages)</ref> <ref name="ISO80000-3_2019">{{cite web |title=ISO 80000-3:2019 Quantities and units — Part 3: Space and time |publisher=[[International Organization for Standardization]] |date=2019 |edition=2 |url=https://www.iso.org/standard/64974.html |access-date=2019-10-23}} [https://www.iso.org/obp/ui/#iso:std:iso:80000:-3:ed-2:v1:en] (11 pages)</ref> <ref name="SIBrochure_9">{{SIbrochure9th}}</ref> <ref name="NISTGuide_2009">{{cite web |title=The NIST Guide for the Use of the International System of Units, Special Publication 811 |author-first1=Ambler |author-last1=Thompson |author-first2=Barry N. |author-last2=Taylor |edition=2008 |publisher=[[National Institute of Standards and Technology]] |date=2020-03-04 |orig-date=2009-07-02 |ref={{sfnref|NIST|2009}} |url=https://www.nist.gov/pml/special-publication-811 |access-date=2023-07-17}} [https://web.archive.org/web/20230515201622/https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication811e2008.pdf]</ref> }} <!-- END reflist --> == External links == * [https://tauday.com/tau-manifesto ''The Tau Manifesto''] {{DEFAULTSORT:Turn (Geometry)}} [[Category:Units of plane angle]] [[Category:Mathematical concepts]] [[Category:Angle]] [[Category:1 (number)]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Anchor
(
edit
)
Template:Circa
(
edit
)
Template:Cite web
(
edit
)
Template:Efn
(
edit
)
Template:Ill
(
edit
)
Template:Infobox physical quantity
(
edit
)
Template:Infobox unit
(
edit
)
Template:Lang
(
edit
)
Template:Math
(
edit
)
Template:Mvar
(
edit
)
Template:Notelist
(
edit
)
Template:Pi
(
edit
)
Template:Redirect2
(
edit
)
Template:Reflist
(
edit
)
Template:See also
(
edit
)
Template:Sfrac
(
edit
)
Template:Short description
(
edit
)
Template:Slink
(
edit
)
Template:Tau
(
edit
)
Template:Use dmy dates
(
edit
)
Template:Use list-defined references
(
edit
)
Template:Val
(
edit
)
Template:Varphi
(
edit
)
Template:Xref
(
edit
)